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Memory Efficient Load Balancing for Distributed Large-Scale
Volume Rendering Using a Two-Layered Group Structure

Marcus WALLDEN'?, Stefano MARKIDIS'", Nonmembers, Masao OKITA", and Fumihiko INO', Members

SUMMARY  We propose a novel compositing pipeline and a dynamic
load balancing technique for volume rendering which utilizes a two-layered
group structure to achieve effective and scalable load balancing. The tech-
nique enables each process to render data from non-contiguous regions of
the volume with minimal impact on the total render time. We demon-
strate the effectiveness of the proposed technique by performing a set of
experiments on a modern GPU cluster. The experiments show that using
the technique results in up to a 35.7% lower worst-case memory usage as
compared to a dynamic k-d tree load balancing technique, whilst simul-
taneously achieving similar or higher render performance. The proposed
technique was also able to lower the amount of transferred data during the
load balancing stage by up to 72.2%. The technique has the potential to
be used in many scenarios where other dynamic load balancing techniques
have proved to be inadequate, such as during large-scale visualization.

key words: large-scale visualization, distributed computing, load balanc-
ing, GPU

1. Introduction

The capabilities of modern supercomputers enable the sim-
ulation and visualization of large-sized data sets with high
precision and detail. Generated data sets, often multivariate
or spanning multiple time steps, can consist of terabytes of
data. Using a sorting scheme called sort-last [1], the data can
be partitioned and distributed among available processes.
The distributed data volumes can then be visualized in paral-
lel by utilizing ray-casting based volume rendering [2]. Par-
tial images from all processes then need to be composed
based on their position and distance from the camera in the
volume [3].

The render time can vary between processes based on
many factors, e.g., used optimization techniques or the char-
acteristics of the data set. If there are any substantial render
time imbalances, dynamic load balancing techniques can
be used to effectively reduce the total render time during
in-situ visualization or post-hoc exploration. However, dy-
namically redistributing data can result in large memory im-
balances between processes. For large data sets some pro-
cesses might run out of memory, making many dynamic
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load balancing techniques unsuitable for large-scale visual-
ization [4], [5].

Commonly used dynamic load balancing techniques
are based on tree structures, e.g., a k-d tree [6]. In the k-d
tree structure, the original volume is represented by the root
of the tree, as illustrated in Fig. 1. For each new depth in the
tree, the volume is split in two on either the X, y or z-axis.
The two resulting volume blocks are then separately held
in two child branches. Each process that participates in the
rendering stage is given ownership of a branch (and all of its
child branches) in one of the levels of the tree. For example,
if 2, 4 or 8 processes are used, each process is given owner-
ship of a branch on depth 1, 2 or 3, respectively. Data can
be load balanced between children of the same branch in the
tree, as shown in Fig. 1. The load balanced data consists of a
slice of blocks that border both branches, ensuring that each
process still only holds a contiguous and convex partition of
data in object space after the load balancing has been com-
pleted [7]. Utilizing this structure and ensuring that each
process only renders contiguous data results in two positive
aspects:

1. A simple composition order for partial images ren-
dered by each process. The k-d tree structure enables
processes to compose all partial images generated by
its blocks during the rendering stage, without any ex-
ternal communication. As such, only a single partial
image from each process need to be composed in an
inter-process compositing stage. In this stage the re-
maining partial images are composed to create an im-
age of the full volume.

2. A low scheduling complexity. The strict k-d tree load
balancing scheme limits between which processes load

Fig. 1 k-d tree data distribution and load balancing. Circles represent
branches in the tree, whereas blocks are represented by cuboids, each of
which results in a partial image when rendered. Branches that can load
balance are connected via dotted lines.
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balancing can take place. This limitation significantly
simplifies the load balancing algorithm.

If data needs to be transferred between two processes
that have ownership of branches on opposite sides of the
tree structure, it is impossible to transfer the data directly
between them. Instead, load balancing has to be performed
multiple times between the upper branches of the tree,
meaning that many processes have to participate in the load
balancing stage. The upper branches of the tree are respon-
sible for larger regions of the volume; the amount of data
that is transferred increases by 100% in each level. This
does not only result in many redundant data transfers, it also
means that using the k-d tree structure can lead to a signifi-
cant memory load imbalance [8]. This behavior should scale
in relation to the number of processes, meaning that it could
be of a greater concern during large-scale visualization. An
example of a k-d tree memory imbalance is shown in Fig. 2,
where the main computational load is focused on the upper
quadrant of the volume. Equalizing the render times also re-
sults in one process holding a substantial part of the volume
in memory.

The worst-case memory usage of a single process when
using the k-d tree structure is O(v), where v is the number of
voxels in the volume. The risk that a high data imbalance
occurs limits the use of k-d tree based dynamic load balanc-
ing in large-scale applications, where even small data im-
balances can result in some processes running out of mem-
ory [5].

There is a need for a dynamic load balancing tech-
nique that does not adhere to the existing limitations of hi-
erarchical tree structures. We propose a technique for dis-
tributed volume rendering of rectilinear grids by which pro-
cesses can render data from non-contiguous regions of the
volume, contrary to k-d tree techniques. By having a non-
hierarchical, less restrictive structure, it would be possible to
prioritize load balancing blocks with high render times. This
would lead to a lower worst-case memory usage and less re-
dundant data transfers. However, rendering data from non-
contiguous regions is not without its drawbacks. In a naive
implementation, it would not be possible to compose par-

1 [

Fig.2 2D representation of a k-d tree block distribution between four
processes, in a worst-case scenario where the main computational load is
focused on the top left quadrant of the volume. Volume blocks are repre-
sented as squares, whereas the color distinguishes different processes.
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tial images on each process during the rendering stage. Par-
tial images, each representing a single block, would instead
have to be composed during the inter-process compositing
stage, greatly increasing the total compositing time.

The contribution of this paper is a novel compositing
pipeline and load balancing technique which utilizes a scal-
able non-hierarchical group structure to effectively allow a
single process to render data from non-contiguous regions
of the volume. Through this technique we also enable the
use of custom load balancing schemes, meaning that the al-
gorithm effectively can be tailored according to the needs
and constraints of the researcher. The main goal of the two-
layered group technique is to resolve existing limitations of
tree-based hierarchical structures, thus reducing the worst-
case process memory usage, without negatively affecting the
total render time. A secondary goal is to reduce the amount
of redundant data transfers, which unnecessarily burdens
I/O functionality. We demonstrate the effectiveness of the
group technique as compared to a k-d tree technique as well
as a static distribution by conducting a series of experiments
on a GPU cluster using up to 32 processes, each of which
has a dedicated GPU.

The structure of this paper is organized as follows. Re-
lated work is presented in Sect. 2. The compositing pipeline
and the load balancing technique are described in Sect. 3.
The technique is then evaluated in Sect. 4. Lastly, our con-
clusions are presented in Sect. 5.

2. Related Work

k-d trees and similar tree structures have been used exten-
sively in many related works to achieve dynamic load bal-
ancing [7]-[11]. The render time of the previous frame is
often used as a load balancing heuristic [7], [9]. Commonly,
uniform-sized blocks are stored in the k-d tree[7], [11].
Other works have also explored using non-uniform blocks
in order to achieve finer granularity [9]. However, this
would require extensive preprocessing and that the volume
is static. Others have utilized machine learning and perfor-
mance modeling as a load balancing heuristic, though still
using a k-d tree structure [11].

Zhang et al. [8] proposed a constrained k-d tree struc-
ture to achieve dynamic load balancing for parallel particle
tracing. They strove to achieve a balanced particle load by
redistributing particles among processes based on a k-d tree
structure. However, they recognized that particles can be
condensed in a small region of the volume, thus requiring
some processes to hold large sections of the volume in mem-
ory. In order to sidestep this issue they introduced constrains
on the k-d tree data partitioning, thus limiting the number of
voxels held by each process. Although this approach en-
sures that processes can hold their respective regions of the
volume in memory, it fails to guarantee an even distribution
of particles due to the used constraints. Furthermore, the au-
thors note that the only way to ensure an optimal distribution
is to have the full volume in memory on each process [8].

Utilizing dynamic load balancing techniques tends to
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result in an uneven data distribution among processes. In
large-scale applications the data sets could consist of mul-
tiple terabytes of data, meaning that even small-scale data
transfers can be time consuming and result in some pro-
cesses exceeding their available amount of memory. As
such, many large-scale visualization projects have utilized
static techniques [5], [12] or have limited load balancing to
equalizing the data distribution, rather than explicitly lower-
ing the total render time [10], [13].

Dorier et al. [13] developed a technique which in-situ
can identify important data of a simulation and reduce less
important data based on a time limit constraint. As such, the
amount of blocks in full resolution vary between each frame,
leading to an interesting load balancing challenge. Render-
ing and compositing were both performed by using Catalyst,
Paraview’s in-situ library [14]. Blocks were randomly dis-
tributed among processes each time step to achieve an even
data distribution and to lower the total render time. In total
16,000 blocks were randomly distributed, leading to 16,000
partial images that needed to be composed. Since blocks
on each process were from random regions of the volume
there was no way to compose the images locally during the
rendering stage, leading to a resource- and time-demanding
inter-process compositing stage.

3. Two-Layered Dynamic Load Balancing Technique

To lower the memory usage and redundant data transfers
as compared to k-d tree techniques, we propose a load bal-
ancing technique with a non-hierarchical structure by which
processes can render blocks from non-contiguous regions
of the volume. Rendering non-contiguous blocks can lead
to a complicated irregular compositing order, as noted in
Sect.2. We introduce a two-layered group structure and a
compositing pipeline to lower the complexity of the com-
positing stage. In this section we provide an overview of
the technique, followed by detailed information about all
included functionality: how the two-layered group struc-
ture is formed, how efficient load balancing is accomplished
and how the compositing pipeline simplifies the composit-
ing stage. Lastly, the memory usage of the group technique
is analyzed.

3.1 Overview of the Technique

We coin the terms full sets, a number of sets which contain
the initial static collection of contiguous blocks delegated to
a process, and working sets, the sets of contiguous blocks
being rendered by a process during a specific frame. All
processes are responsible for two operations: (1) rendering
all blocks present in its working sets and (2) compositing all
partial images of blocks in its full sets.

Figure 3 depicts the execution flow of the presented
technique, whereas Fig. 4 shows an example where a block
is load balanced to another process. As illustrated in
Fig.4 (b), the rendered partial images from load balanced
blocks are returned asynchronously to the original owner
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Fig.3  Program execution flow of the two-layered group technique. Ini-
tially, processes are partitioned into groups and the full sets are distributed
to processes. The rendering stage and an initial compositing step are then
performed by each process. The remaining images are composed in an
inter-group fashion in a second compositing step. Lastly, load balancing is
performed within each group before the next frame can be rendered.
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Fig.4  Example of how aload balanced block is rendered and composed.
(a) A block is load balanced between two processes in the same group. The
load balanced block makes up a new working set on the receiving process.
(b) Each process renders their working sets, starting with blocks belonging
to other processes. Images of working sets not present in a process’ full
sets are returned to the original owner asynchronously during the rendering
stage. (c) Each process composes images from blocks in their full sets.
(d) Inter-group image compositing takes place to compose the final image.

during the rendering stage. Each process can as such
compose partial images from blocks in its own full sets
(Fig. 4 (¢)), leading to a correct compositing order even if
processes are rendering blocks from different regions of
the volume. Utilizing this compositing pipeline means
that only a single partial image from each process need to
be composed during a final inter-process compositing step
(Fig.4 (d)). To summarize, two distinct compositing steps
are required in the group technique: one to compose par-
tial images of blocks in each process’ full sets and one to
compose the resulting image from each process.
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3.2 Two-Layered Group Structure

Instinctively there are two scalability-related concerns cou-
pled to the group technique:

o Finding an adequate load balance for a large number of
processes is time consuming.

e The introduced first compositing step can be time con-
suming if many processes are involved.

These factors can result in excessive communication
and time consuming computations if many processes are uti-
lized. To improve the scalability of the technique, processes
are distributed into one or more distinct and autonomous
groups and limited to load balancing with processes within
the same group. Load balancing and the first composit-
ing step (Fig.4 (a)—(c)) have in such a scenario no inter-
group dependence, meaning they can be performed in paral-
lel within each group. By limiting the amount of processes
that can interact we lower the communication and algorithm
complexity, thus effectively eliminating many scalability-
related concerns.

We define a group as a non-empty static set of pro-
cesses, whereas each process is a member of a single group.
Processes are partitioned into groups in a round-robin fash-
ion at the start of the program, which ensures that the blocks
held by the processes in each group are not concentrated
in the same region of the volume. By scaling the number
of groups relative to the number of processes we can ensure
that the amount of processes in each group remains constant.
An example group structure is displayed in Fig. 5.

3.3 Intra-Group Load Balancing

Load balancing can be performed between any pair of pro-
cesses within the same group. Although this approach is
more flexible than k-d tree techniques, it also means that
the load balancing scheme is NP-Hard if no limitations are
set. To lower the load balancing time complexity we uti-
lize a greedy load balancing algorithm to determine between
which processes load balancing takes place and what data is
transferred. An example of the data distribution using the

Group 1 Group 2

Fig.5 An example structure containing two groups. Processes are par-
titioned into groups in a round-robin fashion. Processes within the same
group can freely perform load balancing amongst each other, as illustrated
by the dotted lines.
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group technique in the scenario presented in Fig. 2 is shown
in Fig. 6.

We utilize f = 4 full sets on each process, created by
splitting the initial contiguous collection of blocks in half
on the y- and z-axes. Slices of blocks can be load balanced
from both the positive and negative direction on the x-axis,
as illustrated in Fig.7. However, we limit load balancing
to a single process at a time in each direction on the x-axis
for each full set. For example, if process 1 load balances a
slice of blocks from the positive direction on the x-axis of
the first full set to process 2, no other process can receive
blocks from the set’s positive direction until process 2 has
returned all load balanced blocks to process 1. This means
that a process is simultaneously only able to delegate blocks
to 2f other processes. Limiting load balancing to a single
process in each direction for each full set has one key ben-
efit: if a pair of processes consecutively performs load bal-
ancing, all transferred blocks are from a contiguous region
in object space. They can as such be put in the same work-
ing set on the receiving process, resulting in a single partial
image which asynchronously can be transferred back before

] O

Fig.6 2D representation of a block distribution between four processes
using the two-layered group technique, in a worst-case scenario where the
main computational load is focused on the top left quadrant of the volume.
‘Volume blocks are represented as squares, whereas the color distinguishes
different processes.
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Fig.7  Slices of blocks can be load balanced from both directions of the
x-axis. However, load balancing for each full set can only be performed
with a single process in each direction. Having four full sets on each pro-
cess means that blocks can be delegated to eight other processes simulta-
neously.
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Algorithm 1: Intra-group load balancing algorithm executed after each rendered frame

Input :
L: List of processes that have a lower-than-average render time.
H: List of processes that have a higher-than-average render time.

> List is sorted based on lowest render time
> List is sorted based on highest render time

S ={s1,---,s,): Dictionary of type {process, set of processes from which the process has been delegated blocks}.
E ={ey, -+ ,en}: Dictionary of type {process, set of processes that the process has delegated blocks to}.
T ={t;,---,ty}: List containing the total render time of each process.
1 B={by, - ,by} > List containing all processes that have not performed load balancing this frame
2 Yte LN B :if ¢, <> ¢ then
3 set p where p € e, N Bsuch thatt, > #;,Viee,N B > p has the highest render time in e; N B
4 recall load balanced slice from p to ¢
5 B = B\{t, p} > Exclude 7 and p from other load balancing events
6 if |load balanced blocks from t to p|= 0 then
7 | e = et\{p}’ Sp = Sp\{t}
8 Yte HN B :if s; <> ¢ then
9 set p where p € s, N Bsuch thatt, <;,Vie s;NB > p has the lowest render time in s; N B
10 recall load balanced slice from 7 to p
1 B = B\{t, p} > Exclude ¢ and p from other load balancing events
12 if |load balanced blocks from p to t|= 0 then
13 | 8= St\{p}aep = ep\{t}
u Yte LN B:if HN s, <> ¢ then
15 set p where p€ HNs; N Bsuchthatt, >4, Yie HNs;N B > p has the highest render time in H N's; N B
16 load balance slice from p to ¢
17 B = B\{t, p} > Exclude 7 and p from other load balancing events
18 Yte LN B :if H <> ¢ then
19 set p where p € HN Bsuch thatt, > #;,Vie HN B > p has the highest render time in H N B
20 load balance slice from p to ¢
21 B = B\{t, p} > Exclude ¢ and p from other load balancing events
22 sy =85 U{pl ey, =epUlt}

the end of the rendering stage.

After each frame the average render times are calcu-
lated in each group. Processes of which the render time
deviates from the average are sorted into one of two lists
depending on if the render time is lower or higher. His-
torical data transfers and current process render times are
then used to dictate which processes in the two lists perform
load balancing. This functionality helps reduce unnecessary
spread of blocks, resulting in fewer image transfers. The
pseudo code of the load balancing algorithm is shown in Al-
gorithm 1. Once a process has performed load balancing
it is excluded from subsequent load balancing events dur-
ing the same frame to limit the amount of data that can be
transferred before the next rendering stage.

The goal of the load balancing algorithm is to equal-
ize the render time among all processes. However, it also
strives to minimize the spread of blocks to lower the amount
of communication and data transfers during the composit-
ing stage. For this purpose, in the first operation of Algo-
rithm 1, each process that has a lower-than-average render
time recalls a previously load balanced slice of blocks, if
possible. Similarly, in the second operation each process
with a higher-than-average render time attempts to return a
load balanced slice of blocks to another process. These op-
erations ensure that a process never delegates blocks to other
processes whilst simultaneously rendering blocks it does not
own. If such operations are not possible, each process with
a lower-than-average render time attempts to perform load
balancing with processes from which it already has been

delegated blocks. Transferred blocks can be put in an al-
ready existing working set, meaning that there is no extra
overhead during the first compositing step. However, for
this operation to be possible it requires that at least one such
process has a higher-than-average render time. Finally, if
none of the previous operations are possible, each process
with a lower-than-average render time is delegated a slice
of blocks from a process with a higher-than-average ren-
der time, which then has to be put into a new working set.
Processes with lower-than-average and higher-than-average
render times are iterated starting with the lowest and high-
est render times, respectively. As such, the process with the
lowest render time performs load balancing with the process
that has the highest render time.

All four operations have a clear block transfer order.
In the first and second operations, slices of blocks are re-
turned in a LIFO (last in first out) order between all pairs
of blocks to ensure that working sets only render contigu-
ous data. In the third operation, a slice of blocks is taken
from the same full set and direction as previously transferred
blocks between the two processes. For the fourth operation,
the slice of blocks is taken from the full set on the sending
process with the highest render time that currently has del-
egated blocks to fewer than two other processes. A slice of
blocks is then load balanced from the positive direction of
the x-axis, or the negative direction in case another process
already has been delegated blocks from the positive direc-
tion.
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3.4 Image Compositing Pipeline

As described in Sect.3.1, two compositing steps are re-
quired when using the group technique. In the first step
all processes compose images of blocks in their full sets.
This operation is strictly performed within each group, and
involves partial images from all load balanced sets being
transferred back to the owning process. This procedure
is similar to direct send compositing [15], which normally
would induce a communication complexity of O(n?), where
n is the number of processes [16]. However, since the pro-
cess only is performed within each group the worst-case
communication complexity will be less than O(n?) as long
as the number of groups is scaled in proportion to the num-
ber of processes. Furthermore, this compositing step can be
asynchronously performed during the rendering stage, re-
sulting in minimal time overhead.

In the second compositing step all remaining partial
images are composed to form the final image which rep-
resents the full volume. It is as such performed in an inter-
group fashion, and is identical to a k-d tree’s or static tech-
nique’s compositing stage. Compositing methods such as
binary swap[3] or DSH[17] could be used in the second
compositing step due to their low communication complex-
ities.

We maintain the same resolution for all images gen-
erated and used in the two compositing steps. However,
we note that utilizing various compression strategies [18] or
variable image sizes could lower the compositing time; es-
pecially in the first compositing step where the partial im-
ages in many cases only portray a small subset of the vol-
ume.

3.5 Process Memory Usage

Given a volume of v voxels, if the group technique is used
each process has to keep its full sets in memory, result-
ing in a memory usage of v/n, where n is the number of
processes. Furthermore, in the worst case scenario, a spe-
cific process’ full sets consist of blocks with near-zero ren-
der times. The process is then delegated blocks so that its
render time matches that of the rest of the processes in the
group. The absolute worst case memory usage is as such
v/g, where g is the number of groups. However, as de-
scribed in Sect. 3.3, the load balancing algorithm prioritizes
load balancing blocks with high render times, ensuring that
the process memory usage will remain lower than 2v/n other
than in extreme scenarios.

4. Experimental Evaluation

In this section we evaluate the group technique by compar-
ing it to a k-d tree technique as well as a static distribu-
tion. Load balancing, data transfers and compositing can
potentially be performed asynchronously during the render-
ing stage depending on the used rendering pipeline. As such
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we chose to evaluate the process render time performance,
the process memory usage, the amount of transferred data
as well as the effect of utilizing multiple groups separately
to provide a broader overview that is not tied to a specific
rendering pipeline. We also provide a separate overview of
the computation times for all stages of the pipeline.

4.1 Experiment Description

We performed a series of tests on a GPU cluster using 8,
16 and 32 processes. Each node was equipped with an Intel
Xeon E5-1650 v4 CPU, 128GB of memory and two Nvidia
GeForce GTX 1080 GPUs. Nodes were interconnected via
EDR InfiniBand and used GCC version 7.3.0, CUDA ver-
sion 9.2 [20] and Open MPI version 3.1.0[21]. Up to two
MPI processes were run on each node, each of which were
allocated a dedicated GPU.

We chose to rotate the camera 360 degrees around the
y-axis to measure the render time and memory usage of each
process at different viewing angles. The image resolution
was set to 10242, which commonly is used for this type of
testing [22]. The used test case and image resolution should
represent an average-case scenario for the examined load
balancing techniques. To test our technique in a wide range
of scenarios we used three different data sets, each of which
have their own unique characteristics.

The first data set is a computed tomography (CT) scan
of a porcine heart [19], shown in Fig. 8 (a). The second data
set is of a Richtmyer-Meshkov instability simulation [19],
displayed in Fig.8(b). The third data set is a CT scan
of a Spathorhynchus fossorium [19], shown in Fig. 8 (c).

(©

Fig.8 Data sets used for evaluation: (a) a CT scan of a porcine heart,
(b) a simulation of the Richtmyer-Meshkov instability and (c) a CT scan of
a Spathorhynchus fossorium [19].
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The three data sets consist of 2048 x 2048 x 2612 vox-
els (43.8GB), 2048 x 2048 x 1920 voxels (32.2GB) and
1024 x 1024 x 750 voxels (6.3GB), respectively. The third
data set is substantially smaller than the other two and can
be visualized on a single machine using modern hardware.
As such, the computation times of the compositing and load
balancing stages will constitute a higher percentage of the
total render time as compared to the other two data sets.
However, it is still of interest to evaluate the achieved load
balance and the amount of transferred data.

Performance variations due to different block sizes
have been investigated in related work [7], which found that
blocks of 647 voxels provided the best balance between fine-
grained load balancing and extra overhead. These block di-
mensions are still used in some modern applications [13].

IEICE TRANS. INF. & SYST., VOL.E102-D, NO.12 DECEMBER 2019

Based on this information we chose to partition the data
sets into same-sized blocks consisting of around 64° vox-
els: 64 x 64 x 82, 64 x 64 x 60 and 64 x 64 x 47 voxels for
the three respective data sets. As such, the two first data sets
were partitioned into 32,768 blocks whereas the third data
set was partitioned into 4096 blocks.

The k-d tree technique used for testing follows the defi-
nition in related work [7]. The initial block distribution pro-
duced by the k-d tree is used as the initial block distribution
for the three examined techniques.

We developed a custom distributed volume rendering
application to use during testing, which seamlessly can sup-
port the structures required by the k-d tree and group tech-
niques. Volume data was stored in the float format, which is
used internally by the developed rendering application. Ren-
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dering was carried out exclusively on GPUs using CUDA,
whereas inter-process communication was performed using
Open MPI. We used the binary swap [3] strategy in the IceT
compositing framework [23] to compose images in the fi-
nal compositing step of all evaluated techniques. Rudimen-
tary empty space skipping [24] was used to avoid rendering
empty blocks.

4.2 Performance Benefits of the Two-Layered Group
Technique

We performed each test multiple consecutive times for the
three evaluated data sets. The performance difference be-
tween each run was negligible; constantly being less than
1%. An overview of the computation times of all stages
of the pipeline is displayed in Fig.9. Process Render Time
represents the render time of the slowest process, excluding
compositing, data transfers and load balancing. First Com-
positing and Second Compositing represent the total time
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required to perform the first and second compositing steps,
respectively. Load Balancing represents the time required
to load balance blocks, including data transfers.

The memory usage was measured by tracking the high-
est amount of blocks held in memory by a single process for
each test, shown in Fig. 10. Using eight processes did not re-
sult in any substantial differences between the two dynamic
techniques. For example, when using the porcine heart data
set the highest recorded amount of blocks was 5568 for the
group technique and 5168 for the k-d tree technique, i.e.
35.9% and 26.2% higher than using a static distribution, re-
spectively. Using the Richtmyer-Meshkov instability data
set in an eight-process configuration resulted in both dy-
namic techniques running out of memory, and is as such not
included in the test results.

Increasing the number of processes to 32 resulted in
the k-d tree technique having the highest memory usage in
all tests. For the porcine heart data set the k-d tree and
group techniques reached a memory usage of 2376 and 1792
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blocks, respectively; 132.0% and 75.0% higher than using a
static distribution. The biggest difference between the two
dynamic techniques was observed for the Spathorhynchus
fossorium data set, where the k-d tree and group techniques
held 162.5% and 68.8% more blocks in memory than the
static distribution, respectively. The group technique con-
sistently achieved a lower memory usage than the k-d tree
technique as the number of processes increased. As such,
we conclude that the group technique has a lower memory
usage complexity.

Figure 11 shows the average process render times for
the three data sets. Both evaluated dynamic techniques
achieved lower process render times than the static distribu-
tion in all tests, clearly demonstrating the benefits of utiliz-
ing dynamic load balancing during large-scale visualization.
However, as the amount of processes increased the group
technique was able to achieve a lower render time than the
k-d tree technique.

Using 8 or 16 processes resulted in similar process ren-
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der times between the two dynamic techniques; the biggest
difference was observed when using the Spathorhynchus
fossorium data set, where the group technique was 12.3%
faster. Increasing the process count to 32 resulted in the
group technique consistently achieving the lowest render
time; between 33.1% (Fig.11(c)) and 9.5% (Fig. 11 (a))
lower than the k-d tree technique.

The k-d tree technique transferred more blocks than the
group technique in all test cases, as seen in Fig. 12. The
gap widened as the number of processes increased, which
validates our claim that the k-d tree technique induces an
abundant amount of redundant data transfers. Using 32 pro-
cesses resulted in the k-d tree technique transferring 227.1%
(Fig. 12 (a)), 52.9% (Fig.12(b)) and 260.0% (Fig.12(c))
more data than the group technique for the three data sets.
As an example, for the porcine heart data set 12,981 blocks
were transferred when using the k-d tree technique. That
amounts to 39.6% of the whole volume. All data sets used
for evaluation were static, meaning that most of the load
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balancing occurred during the first few frames of the vi-
sualization to equalize the initial load imbalance. During
in-situ visualization the volume can change considerably at
any time in the simulation, meaning that using a k-d tree
technique could significantly affect I/O functionality. Fur-
thermore, transferring too much data during the same frame
could prove to be time consuming.

4.3 Utilizing Multiple Groups

To evaluate the scalability of the group technique’s first
compositing step we performed tests using down to eight
processes per group, shown in Fig.13. We observe that
the first-step compositing times are similar for all three
data sets and that they do not increase linearly in rela-
tion to the amount of processes. The highest increase was
observed when going from 16 to 32 processes using the
Spathorhynchus fossorium data set (Fig. 13 (c)). The com-
positing time increased from 11.3 to 18.7 ms when using
one group; a 64.5% increase.

The recorded fist-step compositing times are suffi-
ciently low to be performed asynchronously during the ren-
dering stage, thus not resulting in any time overhead. In-
creasing the amount of groups generally lead to a lower
compositing time. Although seemingly not required in a
32-process configuration, we believe that utilizing multiple
groups can lead to a large performance increase if more pro-
cesses are involved.

Decreasing the number of processes also limits be-
tween which processes load balancing can take place, re-
sulting in higher render times. Figure 9 also includes the
process render times for the group technique when using
multiple groups; down to eight processes per group. Uti-
lizing multiple groups sometimes results in a higher render
time due to having too few processes in each group, which
increases the chance of a high inter-group load imbalance.

5. Conclusion

We have presented a dynamic load balancing technique for
large-scale volume rendering by which processes can render
data from non-contiguous regions of the volume. By utiliz-
ing a two-layered group structure and a novel compositing
pipeline we are efficiently able to resolve many scalability-
related concerns that normally would arise with this type of
design.

The effectiveness of the two-layered group technique
was displayed by comparing it to a k-d tree load balancing
technique in a variety of scenarios. The group technique
proved to have a lower worst-case process memory usage,
while simultaneously achieving similar or higher render per-
formance. In addition, using the group technique signifi-
cantly decreased the amount of redundant data transfers. We
believe that the presented technique has the potential to be
used in large-scale and memory-limited scenarios where k-d
tree techniques currently do not suffice.

Next we plan to evaluate the technique in an in-situ sce-
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nario where the volume is not static. We would also like to
evaluate the technique using more compute nodes to more
accurately assess the benefits of utilizing multiple groups
during large-scale visualization.
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