
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.12 DECEMBER 2019
2329

PAPER Special Section on Parallel and Distributed Computing and Networking

Accelerating the Held-Karp Algorithm for the Symmetric Traveling
Salesman Problem

Kazuro KIMURA†a), Shinya HIGA†, Nonmembers, Masao OKITA††, and Fumihiko INO††, Members

SUMMARY In this paper, we propose an acceleration method for the
Held-Karp algorithm that solves the symmetric traveling salesman prob-
lem by dynamic programming. The proposed method achieves acceleration
with two techniques. First, we locate data-independent subproblems so that
the subproblems can be solved in parallel. Second, we reduce the number of
subproblems by a meet in the middle (MITM) technique, which computes
the optimal path from both clockwise and counterclockwise directions. We
show theoretical analysis on the impact of MITM in terms of the time and
space complexities. In experiments, we compared the proposed method
with a previous method running on a single-core CPU. Experimental re-
sults show that the proposed method on an 8-core CPU was 9.5–10.5 times
faster than the previous method on a single-core CPU. Moreover, the pro-
posed method on a graphics processing unit (GPU) was 30–40 times faster
than that on an 8-core CPU. As a side effect, the proposed method reduced
the memory usage by 48%.
key words: symmetric traveling salesman problem, Held-Karp algorithm,
parallelization, meet in the middle, GPU

1. Introduction

The traveling salesman problem (TSP) is a problem that
finds the minimum Hamiltonian cycle for a weighted com-
plete graph G = (V, E), where V and E are the sets of ver-
tices and edges, respectively. A Hamiltonian cycle here is a
cycle that visits each vertex exactly once and the minimum
Hamiltonian cycle has the lowest-weight cycle, i.e., the low-
est sum of edge weights, in the given graph G. Hereafter, we
call the minimum Hamiltonian cycle the optimal path. We
also call the weight of the optimal path the optimal value.

One special case of the TSP is the symmetric TSP
(sTSP), which deals with an undirected graph. That is, the
given graph has the same weight between two vertices in
each opposite direction: w(i, j) = w( j, i) holds for all ver-
tices i, j ∈ V , where w(i, j) represents the weight of the
edge (i, j) ∈ E from vertices i to j. Many practical ap-
plications include the sTSP as an underlying fundamental
problem. For example, welding robots can minimize their
power consumption by solving the sTSP [1]. In more detail,
an optimal motion plan can be obtained by solving the sTSP
for a graph in which vertices represent the welding points
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and edge weights represent the costs required for moving
between the welding points.

Algorithms for the sTSP can be classified into three
approaches: exact, approximate, and heuristic approaches.
Exact algorithms in [2], [3] find the optimal path but the
problem size that can be solved in a reasonable time is
limited due to high demand for both compute and mem-
ory capacities. By contrast, approximate and heuristic algo-
rithms [4], [5] rapidly find an approximate path but the path
is not optimal. Consequently, approximate and heuristic al-
gorithms are typically used if the given graph has many ver-
tices or the approximation error is acceptable for the over-
lying application. Exact algorithms are preferred otherwise.
The latter case is of our interest where applications require
an exact solution for the sTSP.

The Held-Karp algorithm [2] is an exact algorithm that
deploys dynamic programming for the sTSP. To the best of
our knowledge, the Held-Karp algorithm is the fastest exact
algorithm [6] and its worst-case time complexity is O(n22n),
where n is the number of vertices. Therefore, accelerating
the Held-Karp algorithm increases the problem size n that
can be solved in a reasonable time. The original paper [2]
is a theoretical paper that presented the Held-Karp algo-
rithm with its recursive equations and complexity analysis.
By contrast, Kubo [7] presented a real implementation with
specific data and loop structures. The contribution of [7]
over [2] are twofold: the paper (1) shows a data structure
that represents a set of vertices with a bit sequence; and (2)
finds a loop structure that correctly solves data-dependent
subproblems according to sorted bit sequences.

In this paper, we propose an acceleration method for
the Held-Karp algorithm, which solves the sTSP. The pro-
posed method achieves acceleration with two techniques,
parallelization and meet in the middle (MITM). The former
identifies data-independent subproblems from those gener-
ated by the Held-Karp algorithm. On the other hand, the
latter approximately halves the number of subproblems by
exploiting the symmetric attribute embedded in the given
graph. Moreover, the proposed method reduces the mem-
ory usage as a side effect. We also show theoretical analy-
sis for understanding the impact of MITM in terms of the
time and space complexities. The source code of our im-
plementation is available at http://www-ppl.ist.osaka-u.ac.
jp/research/code/.

The paper is structured as follows. Section 2 introduces
related work to clarify the contribution of the present paper.
Section 3 presents an overview of the Held-Karp algorithm
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with [7]. Section 4 describes the proposed method with the-
oretical analysis. Section 5 shows experiments that evaluate
the performance of the proposed method. Finally, Sect. 6
concludes the paper and discusses future work.

2. Related Work

Concorde [3] is an exact sTSP solver that relies on a cutting-
plane method. This solver is capable of finding the optimal
path for a large graph of n = 85, 900. However, its execu-
tion time depends not only on the number n of vertices, i.e.,
the problem size, but also on the weight of edges. In fact,
Ahammed et al. [8] found that the execution time differed
by 30,000 times though n was fixed. On the other hand, the
execution time of the proposed method depends only on the
number n of vertices. Therefore, the proposed method is
useful for strict real-time situations where the optimal path
must be computed within a certain period of time.

Moffat [9] parallelized the Held-Karp algorithm for the
sTSP using a JavaScript application programming interface
(API). Similar to the proposed method, this method ex-
ploited the data parallelism inherent in the Held-Karp al-
gorithm. However, the maximum problem size was limited
by n ≤ 16 because the method simply stored subproblems
in O(n2n) space. By contrast, the proposed method saves
the memory consumption by using a bit representation that
is useful for identifying data-independent subproblems with
O(2n) space. Furthermore, the proposed method realizes fur-
ther acceleration with MITM.

As for approximation approaches, these approaches re-
turn a solution that is theoretically guaranteed to be close
to the optimal solution. Sahni and Gonzalez [10] proved
that there is no algorithm that solves the sTSP in polyno-
mial time. However, a polynomial time algorithm exists for
the sTSP if edge weights in the graph satisfy the triangle
inequality. Christofides [4] presented a 1.5 approximation
algorithm for the sTSP. The worst time complexity of this
algorithm is O(n3), which is better than that of the Held-
Karp algorithm. Therefore, approximation approaches are
useful when the overlying application accepts solutions be-
ing within a certain bound.

In contrast to the approaches mentioned above, heuris-
tic approaches are usually based on a rule of thumb, which
returns a practical solution but not guaranteed to be optimal
or within certain error bounds. The Lin-Kernighan algo-
rithm [5] deploys an iterative approach that improves an ini-
tial solution by removing two or more edges and adding the
same number of edges. The error to the optimal solution was
usually 1–2%, making heuristic approaches more attractive
than approximation approaches [7]. However, Chandra et
al. [11] pointed out that the computed weight could be 4

√
n

times larger than the optimal value. Consequently, approx-
imation approaches must be selected if the overlying appli-
cation requires guarantee on the maximum error.

3. Held-Karp Algorithm

Let V = {0, 1, · · · , n−1} be the set of vertices that compose a
graph G. Each vertex then can be identified with an integer
value ranging from 0 to n − 1. The optimal path can be
obtained by determining the best visiting order starting from
a vertex and ending at the same vertex. In the following,
let vertex n − 1 be the starting/ending vertex. Accordingly,
we determine the visiting order for the remaining vertices,
which compose a set V ′ = V \ {n − 1} = {0, 1, · · · , n − 2}.

To describe how the Held-Karp algorithm computes the
optimal value OPT, we define the function tsp as follows.

Definition 1. For S ⊆ V ′ and x ∈ S , let tsp(S , x) be the min-
imum weight of the path that starts from the starting vertex
n − 1, visits all vertices in set S , and reaches vertex x.

The optimal value OPT and tsp(S , x) then can be given
by Eqs. (1) and (2), respectively [2].

OPT = min
x∈V ′

(tsp(V ′, x) + w(x, n − 1)), (1)

tsp(S , x) =w(n − 1, x), if |S | = 1,

min
y∈S \{x}

(tsp(S \ {x}, y) + w(y, x)), otherwise. (2)

According to Eqs. (1) and (2), each value of tsp(S , x), where
S ∈ P(V ′) \ ϕ and x ∈ S , is accessed max(n − 1 − |S |, 1)
times to obtain OPT. P(·) here is the power set and ϕ is the
empty set. Figure 1 shows how these references occur dur-
ing OPT computation, where the values of tsp(S , x) are ac-
cessed multiple times. This data dependence relation moti-
vates the Held-Karp algorithm to deploy dynamic program-
ming to avoid redundant computation; the algorithm stores
the values of tsp(S , x) in table Dtsp to reuse the computed
values without duplicated computation. This table can be
indexed by pair (S , x), which have

∑n−1
k=1 k

(
n−1

k

)
cells, where(

n
k

)
is the number of k-combinations from n elements, be-

cause x can take k different vertices when |S | = k, where
1 ≤ k ≤ n − 1 (Fig. 1).

Next, the optimal path relies on the following defini-
tions.

Definition 2. Let R = r1 → r2 → · · · → rn be the path that
visits n vertices in the following order: r1, r2, · · · , rn.

Fig. 1 Data dependence relation inherent in OPT computation for n = 4.
The value of tsp({0}, 0) is required to compute the values of tsp({0, 1}, 1)
and tsp({0, 2}, 2).
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Definition 3. Consider a path that has the weight of
tsp(S , x); the path starts from the starting vertex n− 1, visits
all vertices in set S ⊆ V ′, and reaches vertex x ∈ S . Let
prev(S , x) ∈ V denote the vertex visited immediately before
vertex x on the path.

The vertex prev(S , x) then can be computed according
to Eq. (3) as follows.

prev(S , x) =n − 1, if |S | = 1,

arg min
y∈S \{x}

(tsp(S \ {x}, y) + w(y, x)), otherwise, (3)

where the function arg min(·) returns an argument that min-
imizes the value of the expression given to the function.

According to the above definitions, the optimal path
n − 1 → vn−1 → · · · → v1 → n − 1, where vk represents the
k-th vertex visited before reaching the ending vertex n − 1,
can be computed as follows.

v1 = arg min
x∈V ′

(
tsp(V ′, x) + w(x, n − 1)

)
, (4)

vk =prev(V ′, v1), if k = 2,

prev(V ′ \ {v1, v2, · · · , vk−2}, vk−1), otherwise.
(5)

That is, the optimal path can be identified from v1 by Eq. (4),
then v2, v3, · · · , vn−1 by Eq. (5).

Note here that the value of prev(S , x) can be simultane-
ously computed with that of tsp(S , x). Similar to tsp(S , x),
which we mentioned earlier, redundant computation can be
avoided by storing the value of prev(S , x) in table Dprev.

3.1 Complexity Analysis

We first analyze L(n), or the space complexity of the Held-
Karp algorithm. We assume that a single value occupies
constant space. L(n) then can be given by

L(n) = Ltsp(n) + Lprev(n), (6)

where Ltsp(n) and Lprev(n) are the space complexities for ta-
bles Dtsp and Dprev, respectively. Since these tables have the
same indexing scheme (S , x), where S ∈ P(V ′)\ϕ and x ∈ S ,
we have

Ltsp(n) = Lprev(n) =
n−1∑
k=1

k

(
n − 1

k

)
. (7)

Thus, the worst-case space complexity of the Held-Karp al-
gorithm is O(n2n) because the binomial theorem rewrites
Eq. (7) into Ltsp(n) = Lprev(n) = (n − 1)2n−2.

We next investigate T(n), or the time complexity of the
Held-Karp algorithm, assuming a comparison as the ele-
mentary operation. We define subproblem P(S , x) as fol-
lows.

Definition 4. For S ⊆ V ′ and x ∈ S , let P(S , x) denote

Fig. 2 Data structure of the previous method [7]. Tables are stored in
two-dimensional arrays that have row s and column x. Arcs on the table
represent the execution order for filling up the table.

the subproblem that computes the values of tsp(S , x) and
prev(S , x), i.e., fills in tables Dtsp and Dprev.

T(n) can be given by

T(n) = T1(n) + T2(n), (8)

where T1(n) is the time complexity for solving a set of all
subproblems, {P(S , x) | S ∈ P(V ′) \ ϕ, x ∈ S }, and T2(n) is
the time complexity for obtaining the optimal value and the
optimal path from tables Dtsp and Dprev, respectively. T1 and
T2 can be expressed as follows.

T1(n) =
n−1∑
k=2

k(k − 1)

(
n − 1

k

)
, (9)

T2(n) =n − 1. (10)

Thus, the worst-case time complexity of the Held-Karp al-
gorithm is O(n22n) because the binomial theorem rewrites
Eq. (9) into T1(n) = (n − 1)(n − 2)2n−3.

3.2 Previous Method

The previous method [7], which we denote hereafter by M0,
deploys a bit string expression to represent set S ⊆ V ′

(Fig. 2). That is, set S is expressed by bit string s, or a binary
sequence of n−1 bits; the x-th bit of s, where 0 ≤ x ≤ n−2,
is 1 if x ∈ S and 0 otherwise. Consequently, bit string s can
be interpreted as an integer value in the range [0, 2n−1 − 1].
This value can be directly used as an index of tables Dtsp and
Dprev, which can be stored in two-dimensional arrays. As
shown in Fig. 2, the tables are indexed with row s and col-
umn x to store the value for pair (S , x), where S ∈ P(V ′) \ ϕ
and x ∈ S . Thus, table values can be rapidly accessed in
constant time.

This indexing scheme has another benefit in obtaining a
correct execution order for solving subproblems. As shown
in Fig. 1, some subproblems must be computed before oth-
ers due to data dependence. Filling up the arrays from lower
to higher indices guarantees such a correct execution order
(Fig. 2).

4. Proposed Method

The Held-Karp algorithm produces not only data-dependent
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Fig. 3 An example of data-independent subproblems that can be pro-
cessed in parallel (n = 4). Subproblems {P(S , x)} of the same size |S | can
be processed in parallel, but those with different |S | must be processed se-
quentially (from the top to bottom of the figure).

subproblems but also data-independent subproblems. The
proposed method M1 identifies such data-independent sub-
problems to process them in parallel. The method M2 fur-
ther achieves acceleration by MITM, which exploits the
symmetric attribute available in the graph. The method M2

also reduces the memory usage.

4.1 Parallelization Technique

The proposed method M1 classifies subproblems into n − 1
groups such that subproblems in each group can be pro-
cessed in parallel. In other words, subproblems belonging
to different groups must be processed sequentially with n−1
steps. The key idea for realizing this classification is to
group subproblems by their size k, where 1 ≤ k ≤ n − 1.

Definition 5. Let |P(S , x)| = |S | be the size of subproblem
P(S , x).

More specifically, Eqs. (2) and (3) indicate that sub-
problems of size k depend only on those of size k−1 (Fig. 3).
This implies that (1) at least n − 1 steps are required to pro-
cess all 1 ≤ k ≤ n−1 and (2) subproblems of the same size k
are data-independent, allowing them to be solved in parallel.

Because the proposed method adopts the same index-
ing scheme as the previous method M0 [7], the subproblem
size |S | can be easily computed according to the Hamming
weight of bit string s, where s corresponds to set S ⊆ V ′.

Definition 6. Let d(s) be the number of 1s in bit string s.

Thus, we have |S | = d(s) for any S , which means
that data-independent subproblems can be classified into the
same group by Hamming weight.

Notice here that (data-independent) subproblems that
have the same Hamming weight involve non-contiguous
rows in each table because the previous method M0 stores
subproblems in an increasing order of s (Fig. 2). For ex-
ample, subproblems of size 1 exist in the first, second, and
fourth rows in Fig. 2. Thus, search operations are required
to locate subproblems that form the same group, eliminat-
ing the advantage of constant-time access. To deal with this
issue, our method sorts the subproblems, i.e., bit strings,
by Hamming weight so that data-independent subproblems
are stored in contiguous rows in each table (Fig. 4). This
operation incurs an overhead, but once sorted, the data-
independent subproblems can be located in constant time.

Fig. 4 Proposed data structure that facilitates locating data-independent
subproblems (n = 4). Subproblems are sorted by Hamming weight to store
data-independent subproblems in a contiguous region. Note here that we
omit the 0-th row (i = 0) in this figure, because the 0-th row corresponds to
the subproblem of size zero (i.e., an empty set). However, this dummy row
is required to simplify index computation.

We introduce functions bstr and offset to identify the
contiguous rows that correspond to data-independent sub-
problems.

Definition 7. Let bstr(i), where 0 ≤ i ≤ 2n−1 − 1, be the
i-th bit string in a binary sequence of length n − 1 sorted by
ascending order of Hamming weight where bit sequences of
the same Hamming weight are further sorted by ascending
order of numerical value.

Definition 8. Let offset(k) be the number of bit strings with
Hamming weight at most k − 1 given by

offset(k) =
k−1∑
l=0

(
n − 1

l

)
, (11)

where 1 ≤ k ≤ n − 1.

The number offset(k) implies the minimum index for
bit sequences of hamming weight of k. Consequently, sorted
subproblems of size k exist in a contiguous region from bit
strings bstr(offset(k)) to bstr(offset(k + 1) − 1). To locate
these rows rapidly, we precompute the function values of
bstr(i) and offset(k) for all i and k, which are then stored in
tables Dbstr and Doffset, respectively.

We first analyze L′(n), or the space complexity of M1,
which can be expressed as follows.

L′(n) = Lbstr(n) + Loffset(n) + Ltsp(n) + Lprev(n), (12)

where Lbstr(n) and Loffset(n) are the space complexities for
storing the values of bstr(i) and offset(k), for all 0 ≤ i ≤
2n−1 − 1 and 1 ≤ k ≤ n − 1, respectively. Obviously, we
have Lbstr ∈ O(2n) and Loffset ∈ O(n). Thus, Lbstr and Loffset

are asymptotically negligible in comparison to Ltsp,Lprev ∈
O(n2n). Therefore, the space complexity of M1 equals to
that of M0.

Finally, T′(n), or the time complexity of M1, can be
given by

T′(n) = Tbstr(n) + Toffset(n) + T1(n) + T2(n), (13)

where Tbstr(n) and Toffset(n) are the time complexities for
computing the values of bstr(i) and offset(k), for all 0 ≤ i ≤
2n−1 − 1 and 1 ≤ k ≤ n − 1, respectively.

• Tbstr(n) ∈ O(n2n) holds. To compute the values of
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Fig. 5 MITM technique for computing the optimal path from both clock-
wise and counterclockwise directions.

bstr(i), we have to obtain the Hamming weights of all
bit strings. Since the number of bit strings of length
n − 1 is 2n−1, the worst-case time complexity for ob-
taining all Hamming weights is given by O(n2n). As
for sorting subproblems, the merge sort algorithm has
the worst-case time complexity of O(n2n).
• Toffset(n) ∈ O(n2n) holds. The values of offset(k) can

be computed by traversing row indices from the top of
table Dbstr; offset(k) is the first index that has Hamming
weight k.

Thus, the terms in Eq. (13) except T1 are asymptotically
negligible in comparison to T1. Since T1 is the time com-
plexity for solving all subproblems, parallelizing this per-
formance bottleneck leads to acceleration.

4.2 Meet in the Middle (MITM) Technique

The proposed method M2 integrates the MITM technique
into M1. Given an undirected graph, MITM computes the
optimal path from both clockwise and counterclockwise di-
rections, solving subproblems of at most size ⌈n/2⌉ instead
of those of at most n − 1 (Fig. 5). In comparison to methods
M0 and M1, MITM roughly halves the number of subprob-
lems that are to be solved.

We first explain how MITM obtains the optimal value.
To do this, we introduce the following operators for paths.

Definition 9. Let + be the binary operator that concatenates
two paths. That is, we obtain path R + Q = r → · · · → x→
· · · → q from paths R = r → · · · → x and Q = x→ · · · → q.

Definition 10. Let rev be the unary operator that returns the
given path in reverse order. That is, we obtain path rev(R) =
rn → rn−1 → · · · → r1 from path R = r1 → r2 → · · · → rn.

Theorem 1. Obviously, rev(rev(R)) = R holds.

Let m be the midpoint of the optimal path (Fig. 5); since
the optimal path contains n vertices, m is the ⌈n/2⌉-th vertex
from the starting vertex. Consequently, the optimal path can
be given by A+B, where A = n−1→ a1 → · · · → a⌈n/2⌉−1 →
m and B = m→ b1 → · · · → bn−⌈n/2⌉−1 → n − 1. Theorem 2
holds for the weights of paths A and B.

Theorem 2. Let S A be the set of vertices that constitute path
A. The weights of paths A and B are then given by tsp(S A,m)
and tsp(S A ∪ {m},m), respectively, where S A is the comple-
mentary set of S A in V ′.

Proof. According to Definition 1, the weights of paths A

Algorithm 1 Optimal path computation with MITM.
1: Compute set S A and midpoint m by Eq. (16);
2: Compute path A by Eq. (5), which starts from prev(S A,m);
3: Compute path rev(B) by Eq. (5), which starts from prev(S A ∪ {m},m);
4: Compute the optimal path A + rev(rev(B));

and rev(B) are tsp(S A,m) and tsp(S A ∪ {m},m), respectively.
Since the graph consists of undirected edges, i.e., weights
are symmetric, the weight of path B equals to that of path
rev(B). Therefore, the weight of path B is given by tsp(S A ∪
{m},m).

Equation (14) gives the optimal value OPT.

OPT = min
(S ,x)∈F

(
tsp(S , x) + tsp(S ∪ {x}, x)

)
, (14)

where set F is given by

F = {(S , x) | S ∈P(V ′) \ ϕ, x∈S such that |S |=⌈n/2⌉}.
(15)

Once we set a pair (S , x) for the first term of Eq. (14), we
accordingly obtain a unique pair (S ∪ {x}, x) for the second
term. Furthermore, |S ∪ {x}| ≤ ⌈n/2⌉ holds. Therefore, we
can compute OPT from subproblems of at most size ⌈n/2⌉.

We next describe how the proposed method M2 obtains
the optimal path with MITM. Algorithm 1 returns the opti-
mal path from set S A and midpoint m, which can be given
by

(S A,m) = arg min
(S ,x)∈F

(
tsp(S , x) + tsp(S ∪ {x}, x)

)
. (16)

We next analyze T′′(n), or the time complexity of M2,
which is given by

T′′(n) = Tbstr(n) + Toffset(n) + T′1(n) + T′2(n), (17)

where T′1(n) is the time complexity for solving subproblems
of size k ≤ ⌈n/2⌉ and T′2(n) is that for obtaining the optimal
value and path. The former term is given by

T′1(n) =
⌈n/2⌉∑
k=2

k(k − 1)

(
n − 1

k

)
. (18)

Lemmas 1 and 2 then give Theorem 3 whose proofs
are presented in Appendix A, Appendix B and Appendix C,
respectively.

Lemma 1. The time complexity T′1(n) for solving all sub-
problems of size k ≤ ⌈n/2⌉ is given by

T′1(n)

=


T1(n)/2, if n is even,

T1(n)/2 +
(n − 1)(n − 2)

2

(
n − 3

(n − 3)/2

)
, otherwise.

(19)
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Lemma 2. For any even number n,
(

n
n/2

)
∈ Θ(2n/

√
n) holds.

Theorem 3. Given the time complexity T1(n) for solving
subproblems for all 1 ≤ k ≤ n− 1 and that T′1(n) for solving
subproblems for all k ≤ ⌈n/2⌉, we have

lim
n→∞

T′1(n)/T1(n) = 1/2. (20)

As for the latter term of Eq. (17), we have

T′2(n) = ⌈n/2⌉
(
n − 1
⌈n/2⌉

)
− 1, (21)

because there are
(

n−1
⌈n/2⌉

)
sets whose size is |S | = ⌈n/2⌉. Ac-

cording to Lemma 2, T′2(n) ∈ O(
√

n2n) holds. Therefore,
similar to Tbstr(n) and Toffset(n), T′2(n) is asymptotically neg-
ligible in comparison to T1 in Eq. (17). In summary, MITM
is expected to double the performance according to Theo-
rem 3.

Note that MITM can be integrated into the previous
method M0 instead of M1; this integration allows us to skip
subproblems of larger than ⌈n/2⌉. However, we avoid this
because MITM is able to reduce the memory usage if sub-
problems in tables Dtsp and Dprev are sorted by Hamming
weight. Thus, there exists a common procedure in methods
M1 and M2.

4.3 Reducing Memory Usage

The proposed method M2 is allowed to store the solutions
for the subproblems of size k ≤ ⌈n/2⌉ whereas the previous
method M0 has to store the solutions for those of size k ≤
n − 1. Therefore, the memory usage of M2 asymptotically
reduces to 1/2 in comparison to that of M0 as follows.

Theorem 4. Let L′tsp(n) and L′prev(n) be the space complexi-
ties of tables Dtsp and Dprev in method M2, respectively. We
then have

lim
n→∞

L′tsp(n)/Ltsp(n) = 1/2, (22)

lim
n→∞

L′prev(n)/Lprev(n) = 1/2. (23)

The proof for Theorem 4 is presented in Appendix D.
The above discussion assumes that necessary rows in

tables Dtsp and Dprev exist in contiguous regions as shown
in Fig. 6. In other words, tables in the previous method M0

fails to save the memory usage because necessary rows exist
in non-contiguous regions; the entire table must be allocated
for execution.

Similar to the original method M0, the tables must
be accessed in constant time to achieve acceleration with
MITM. To realize this constant time access, we introduce
function rank as follows.

Definition 11. Consider the i-th bit string s, where 0 ≤ i ≤
2n−1−1 and s = bstr(i), in a sequence of bit strings sorted by
ascending order of Hamming weight where bit sequences of
the same Hamming weight are further sorted by ascending

Fig. 6 Comparison of data structures deployed for table Dprev of the pre-
vious method M0 and that of the proposed method M2 (n = 6). Method M2

stores necessary rows in a contiguous region, allowing unnecessary rows
not to be allocated. Unnecessary rows are colored with light blue.

order of numerical value. Let rank(s) be the rank of string s
in the sequence of bit strings that have the same Hamming
weight. rank(s) is then given by rank(s) = i − offset(d(s)).

Using the function rank, the value for (s, x) at the k-th
step can be stored in the element at (offset(k)+ rank(s), x) of
the two-dimensional array. As shown in Fig. 6, this indexing
scheme allows necessary rows to be stored in a contiguous
region and to be accessed in constant time. For example,
a bit sequence of 11010 has a hamming weight of 3. Ac-
cordingly, this sequence corresponds to the subproblems of
size 3, which are processed at the third step (k = 3). We
then have offset(3) = 16 according to Definition 8. Further-
more, we have rank(11010) = 8 because rank(11010) gives
the rank of 11010 in sorted sequences that have a hamming
weight of 3: 00111, 01011, 01101, 01110, 10011, 10101,
10110, 11001, 11010 and 11100, each corresponding to 7,
11, 13, 14, 19, 21, 22, 25, 26 and 28 in decimal.

The time complexity Trank(n) for computing rank(s) is
negligible in comparison to T′1. In more detail, Trank(n) ∈
O(2n) holds because the values of rank(s) can be computed
by traversing row indices from the top of table Dbstr. Sim-
ilarly, the space complexity Lrank(n) for storing rank(s) is
negligible in comparison to Ltsp and Lprev; Lrank(n) ∈ O(2n)
holds if we store all values in table Drank.

The space complexity for table Dtsp can be further re-
duced by allocating rows only for two consecutive steps and
overwriting the allocated rows that are not to be accessed.
More specifically, tsp(S , x) at the (k + 1)-th step depends
only on that at the k-th step, which means that all values
of tsp(S , x) except those at the last step can be overwrit-
ten. Accordingly, the proposed method M2 allocates only
the rows for the latest two steps rather than all rows in table
Dtsp. Furthermore, the method deploys a double buffering
scheme that stores the rows computed at odd and even steps
in tables Dtsp1 and Dtsp0, respectively (Fig. 7). Each table
holds the value for bit string s in the rank(s)-th row to real-
ize constant time access to a contiguous region.

Finally, we analyze the space complexities of tables
Dtsp0 and Dtsp1. The number of values computed at the k-
th step is maximized when k = ⌈(n − 1)/2⌉. Each table
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Fig. 7 Double buffering scheme that alternatively uses tables Dtsp0 and
Dtsp1 (n = 8). Instead of allocating all rows in Dtsp, limited rows are allo-
cated only for two consecutive steps.

then requires
(

n−1
⌈(n−1)/2⌉

)
rows and n − 1 columns to store all

values generated at the k-th step. According to Lemma 2,
both the space complexities for tables Dtsp0 and Dtsp1 can
be given by O(

√
n2n), which is negligible in comparison to

Lprev ∈ O(n2n).

5. Experiments

We evaluated the proposed methods M1 and M2 by com-
paring them with the previous method M0. The evaluation
metrics were the execution time, the speedup ratio, and the
memory usage, which demonstrated the impact of paral-
lelization and MITM.

For the experiments, all methods were implemented
with the C language and OpenMP directives [12] to ob-
tain performance results on a multi-core CPU. We adopted
bucket sort to implement sorting operations on the CPU.
Similarly, we implemented all methods except M0 with the
compute unified device architecture (CUDA) [13] to execute
the methods on a GPU. Sort operations were implemented
with the Thrust library [14]. Table 1 shows the specifica-
tion of the deployed machine. Hyper-threading was enabled
on the 8-core CPU, and thus, at most 16 threads were ex-
ecuted on 16 logical cores. Our CPU-based implementa-
tion parallelizes the k-th step with all CPU threads. On the
other hand, the GPU-based implementation parallelizes the
k-th step with

(
n−1

k

)
threads; each thread is responsible for

processing a bit sequence and each block consists of 1024
threads.

As for the problem size n, we varied the number of
vertices from 4 to 29, which was the maximum number that
could be solved on the GPU successfully; the execution for
n ≥ 30 failed due to exhaustion of GPU memory. Given a
complete weighted graph, all the methods returned the op-
timal path with its value OPT. Each edge in the graph had
a random weight specified as an integer value in the range
[1, 1023]. For each size of n, we generated 10 graphs that
had random weights. For each graph, we executed 50 times
(500 times for each n) and the minimum time was selected
for each n. We found that the maximum time was close to
the minimum time. For example, the execution times of M2

on the GPU ranged from 1.16 s to 1.17 s for n = 29. Thus,
the gap between the minimum and maximum times was neg-
ligible on our machine because the time complexity of the

Table 1 Specification of experimental machine.

Classification Specification
CPU Intel Xeon Silver 4110 (8 cores)
Memory capacity (CPU) 96 GB
GPU NVIDIA Tesla V100 PCIe
Memory capacity (GPU) 16 GB
GPU driver 396.44
OS Ubuntu 16.045 LTS
Development environment GCC 5.4.0 and CUDA 9.2
Compile option O3 optimization

Fig. 8 Comparison of the previous method M0 and the proposed meth-
ods M1 and M2 in terms of execution time.

Held-Karp algorithm depends only on n.
Figure 8 shows the execution time for different prob-

lem sizes (4 ≤ n ≤ 29). The proposed methods M1 and
M2 were faster than the previous method M0 when the prob-
lem size was sufficiently large (n ≥ 13) where efficient par-
allelization was achieved. In other words, small problem
sizes solved within 0.001 s could not be accelerated by par-
allelization, which involved a synchronization overhead; a
synchronization operation is necessary at every step to in-
crease the problem size k. We also found that M2 was faster
than M1 because acceleration by MITM is independent from
that by parallelization. That is, the former technique reduces
the number of subproblems that are to be solved whereas the
latter technique reduces the execution time for solving sub-
problems. In particular, M2 running on the GPU was 30–40
times faster than that on the CPU.

All of execution times in Fig. 8 include data transfer
time. The data transfer time of M2 on the GPU for n = 29
was 65.2 µs, which was negligible compared to the execu-
tion time of 1.16 s. Note that data transfer occurs only at
the program initialization and finalization to send the input
to the GPU and receive the output from the GPU, respec-
tively. The input size is given by O(n2), which corresponds
to an adjacency matrix that stores graph information. On
the other hand, the output size is given by O(n), which cor-
responds to the optimal path and value. Thus, the amount
of data transfer is asymptotically negligible to that of com-
putation, which has the time complexity of O(n22n). Note
that our GPU-based implementation failed to overcome the
CPU-based implementation when n < 16, because the prob-
lem size was not sufficient large to maximize the efficiency
of GPU execution. The data transfer time for n = 4 occupied
12.6 % of the execution time.

Figure 9 shows the speedup ratio obtained on the CPU.
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Fig. 9 Speedup ratio of the proposed methods M1 and M2 over the pre-
vious method M0 with different problem sizes. All methods were executed
on the CPU.

Fig. 10 Speedup ratio of the proposed method M1 over the previous
method M0 with different numbers of CPU threads (n = 29). Executions
using more than 8 threads involved multiple threads to be executed on a
physical CPU core.

Our parallelization technique M1 achieved a 6.3× speedup
for large problems of n ≥ 25. More speedups were achieved
by M2, which integrated the MITM technique into M1; we
obtained a 9.5× speedup when n was odd and a 10.5×
speedup otherwise. Thus, acceleration achieved by MITM
reached a factor of 1.5 and that of 1.7 when n was odd and
even, respectively. This zigzag behavior observed in Fig. 9,
i.e., higher speedups for even numbers of vertices, perfectly
matches to our theoretical analysis presented in Sect. 4.2.

We next investigated how our parallelization technique
M1 increased the speedup with the number of CPU threads
(Fig. 10). As shown in this figure, we observed a linear
speedup for n = 29, which increased in proportion to the
number of threads. When n = 29, there were many sub-
problems sufficient to make parallel threads busy. For ex-
ample, the proposed method generated ⌈n/2⌉

(
n−1
⌈n/2⌉

)
subprob-

lems at the ⌈n/2⌉-th step, so that 561, 632, 400 subproblems
were assigned to 16 CPU threads when n = 29. In Fig. 10,
the speedup slightly decreased when we increased the num-
ber of threads from 8 to 9. This slight decrease was due
to hyper-threading, which dropped the efficiency of thread
execution when multiple threads were assigned to a single
physical core. A similar behavior can be found in other
memory-intensive applications [15]–[17].

Finally, we investigated the memory usage of the pro-
posed and previous methods. The memory usage was com-
puted assuming that tables Dprev, Dtsp, Dbstr, and Drank have
1 B, 2 B, 4 B, and 4 B values, respectively. Note that we

Fig. 11 Reduction rate γ of memory usage. A positive rate means that
the proposed method M2 reduced the memory usage of the previous method
M0. Execution of n = 30 failed due to exhaustion of GPU memory.

avoided considering variables that can be stored in poly-
nomial space; In fact, these variables consume several KB
when n = 29, which is negligible to other data. Figure 11
shows the reduction rate of memory usage, γ = (α − β)/α,
where α and β are the memory usage of M0 and that of
M2, respectively. We observed that the rate γ had a neg-
ative value when n ≤ 7 but increased with n. The reason
for this negative value was due to the additional tables Dbstr

and Doffset. On the other hand, the increase was yielded by
the memory reduction technique presented in Sect. 4.3; the
proposed method replaces table Dtsp with two smaller tables
Dtsp0 and Dtsp1, which reduces the space complexity from
O(n2n) to O(

√
n2n). Consequently, the gap from M0 to M2

increased with n.
Note here that the memory usage showed a zigzag be-

havior similar to that observed for the speedup (Fig. 9). This
behavior was also theoretically analyzed in Sect. 4.2. The
highest reduction rate of 48% was obtained when n = 28,
which was the largest even problem size processed success-
fully on the deployed GPU. In theoretical, the memory us-
age roughly doubles as the problem size increases by 1. Ac-
tually, method M2 consumed 5.2 GB and 11.2 GB of GPU
memory when n = 28 and n = 29, respectively. Thus, the
problem size of n = 30 required approximately 22 GB of
GPU memory for execution, which was beyond the capacity
available on the deployed GPU.

6. Conclusion

In this paper, we proposed an acceleration method for the
Held-Karp algorithm, which is an exact algorithm for the
sTSP. The proposed method achieves acceleration with par-
allelization and MITM. We also showed theoretical analysis
for the time and space complexities of the proposed method.

Experimental results show that the proposed method
on an 8-core CPU was 9.5–10.5 times faster than the pre-
vious method on a single-core CPU. Moreover, the pro-
posed method on the latest GPU was 30–40 times faster than
that on the multi-core CPU. As a side effect, the proposed
method reduced the memory usage by 48%, which matches
to the theoretical analysis.

Future work is to deal with large problem sizes that
cannot be naively stored in the GPU memory due to memory
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exhaustion. An out-of-core processing scheme [18], [19]
may be useful for realizing this large-scale computation; the
scheme divides data into small pieces and iteratively pro-
cesses the pieces with overlapping GPU computation with
CPU–GPU data transfer.
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Appendix A: Proof for Lemma 1

Let N0 be a set of non-negative integers. We introduce Lem-
mas 3 and 4 to show a proof for Lemma 1.

Lemma 3. For any n ∈ N0 and k ∈ N0, where k ≤ n,

k

(
n
k

)
= n

(
n − 1
k − 1

)
. (A· 1)

Proof. Lemma 3 obviously holds according to the definition
of the binomial coefficient:

(
n
k

)
= n!/(k!(n − k)!).

Lemma 4. For any n ∈ N0,

n∑
k=0

(
2n + 1

k

)
= 22n, (A· 2)

n∑
k=0

(
2n
k

)
= 22n−1 +

1
2

(
2n
n

)
. (A· 3)

Proof. First, we show a proof for Eq. (A· 2). According to
the symmetry rule for binomial coefficients, we have(

2n + 1
k

)
=

(
2n + 1

2n − k + 1

)
, (A· 4)

for all 0 ≤ k ≤ 2n + 1. Therefore, we have

n∑
k=0

(
2n + 1

k

)
=

2n+1∑
k=n+1

(
2n + 1

k

)
. (A· 5)

Using this equivalence, the left-hand side of Eq. (A· 2) can
be rewritten as follows.

n∑
k=0

(
2n + 1

k

)
=

1
2

 n∑
k=0

(
2n + 1

k

)
+

n∑
k=0

(
2n + 1

k

)
=

1
2

 n∑
k=0

(
2n + 1

k

)
+

2n+1∑
k=n+1

(
2n + 1

k

)
=

1
2

2n+1∑
k=0

(
2n + 1

k

)
. (A· 6)

Applying the binomial theorem to Eq. (A· 6) gives

n∑
k=0

(
2n + 1

k

)
=

1
2

2n+1∑
k=0

(
2n + 1

k

)
= 22n. (A· 7)
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Thus, Eq. (A· 2) holds.
We next show a proof for Eq. (A· 3). Similar to

Eq. (A· 4), the symmetry rule for binomial coefficients gives

(
2n
k

)
=

(
2n

2n − k

)
, (A· 8)

for all 0 ≤ k ≤ 2n. Therefore, we have

n−1∑
k=0

(
2n
k

)
=

2n∑
k=n+1

(
2n
k

)
. (A· 9)

Using this equivalence, the left-hand side of Eq. (A· 3) can
be rewritten as follows.

n∑
k=0

(
2n
k

)
=

1
2

n−1∑
k=0

(
2n
k

)
+

(
2n
n

)
+

n−1∑
k=0

(
2n
k

)
+

(
2n
n

)
=

1
2

n−1∑
k=0

(
2n
k

)
+

(
2n
n

)
+

2n∑
k=n+1

(
2n
k

)
+

(
2n
n

)
=

1
2

 2n∑
k=0

(
2n
k

)
+

(
2n
n

) . (A· 10)

Applying the binomial theorem to Eq. (A· 10) gives

n∑
k=0

(
2n
k

)
=

1
2

 2n∑
k=0

(
2n
k

)
+

(
2n
n

)
= 22n−1 +

1
2

(
2n
n

)
. (A· 11)

Thus, Eq. (A· 3) holds.

Using Lemmas 3 and 4, we show a proof for Lemma 1.

Proof. By applying Lemma 3 twice to Eq. (18), we obtain

T′1(n) =
⌈n/2⌉∑
k=2

k(k − 1)

(
n − 1

k

)

= (n − 1)(n − 2)
⌈n/2⌉∑
k=2

(
n − 3
k − 2

)

= (n − 1)(n − 2)
⌈n/2⌉−2∑

l=0

(
n − 3

l

)
. (A· 12)

We then consider two cases.

Case 1. n is even. Since n − 3 is an odd number, there is
an integer m such that 2m + 1 = n − 3. Therefore,
⌈n/2⌉ − 2 = m. Using these equations, we have

⌈n/2⌉−2∑
l=0

(
n − 3

l

)
=

m∑
l=0

(
2m + 1

l

)
. (A· 13)

Applying Lemma 4 to Eq. (A· 13), we obtain

⌈n/2⌉−2∑
l=0

(
n − 3

l

)
= 22m = 2n−4. (A· 14)

Therefore,

T′1(n) = (n − 1)(n − 2)
⌈n/2⌉−2∑

l=0

(
n − 3

l

)
= (n − 1)(n − 2)2n−4

= T1(n)/2. (A· 15)

Case 2. n is odd. Since n− 3 is an even number, there is an
integer m such that 2m = n − 3. Therefore, ⌈n/2⌉ − 2 =
m. Using these equations, we have

⌈n/2⌉−2∑
l=0

(
n − 3

l

)
=

m∑
l=0

(
2m
l

)
. (A· 16)

Applying Lemma 4 to Eq. (A· 16), we obtain

⌈n/2⌉−2∑
l=0

(
n − 3

l

)
= 22m−1 +

1
2

(
2m
m

)
= 2n−4 +

1
2

(
n − 3

(n − 3)/2

)
. (A· 17)

Therefore,

T′1(n) = (n − 1)(n − 2)
⌈n/2⌉−2∑

l=0

(
n − 3

l

)
= T1(n)/2 +

(n − 1)(n − 2)
2

(
n − 3

(n − 3)/2

)
.

(A· 18)

Thus, by the two cases above, Lemma 1 holds.

Appendix B: Proof for Lemma 2

Proof. According to the Wallis product [20] for π, we have

lim
n→∞

22n

√
n

(
2n
n

) = √π. (A· 19)

That is, using the (ε, δ)-definition of limit,

∀ε>0, ∃n0 ∈N0 s.t. ∀n ∈ N0,

n>n0 ⇒

∣∣∣∣∣∣∣∣∣∣∣∣
22n

√
n

(
2n
n

) − √π
∣∣∣∣∣∣∣∣∣∣∣∣ < ε, (A· 20)

which can be rewritten as

∃ε0 s.t. 0<ε0<
√
π, ∃n0 ∈ N0 s.t. ∀n ∈ N0,

n>n0 ⇒

∣∣∣∣∣∣∣∣∣∣∣∣
22n

√
n

(
2n
n

) − √π
∣∣∣∣∣∣∣∣∣∣∣∣ < ε0. (A· 21)
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Then ∣∣∣∣∣∣∣∣∣∣∣∣
22n

√
n

(
2n
n

) − √π
∣∣∣∣∣∣∣∣∣∣∣∣ < ε0

⇒− ε0 <
22n

√
n

(
2n
n

) − √π < ε0

⇒
√
π − ε0 <

22n

√
n

(
2n
n

) < √π + ε0. (A· 22)

Since 0 < ε0 <
√
π gives

√
π − ε0 > 0,

1
√
π + ε0

<

√
n

(
2n
n

)
22n

<
1

√
π − ε0

⇒ 1
√
π + ε0

22n

√
n
<

(
2n
n

)
<

1
√
π − ε0

22n

√
n
. (A· 23)

Using c1 = 1/(
√
π + ε0) and c2 = 1/(

√
π − ε0),

∃n0 ∈ N0 s.t. ∀n ∈ N0,

n > n0 ⇒ c1
22n

√
n
<

(
2n
n

)
< c2

22n

√
n
. (A· 24)

Thus,

(
2n
n

)
∈ Θ

(
22n

√
n

)
. Assuming n be an even number, we

obtain(
n

n/2

)
∈ Θ

(
2n

√
n

)
. (A· 25)

Appendix C: Proof of Theorem 3

Proof. We consider two cases.

Case 1. n is even. According to Lemma 1, Eq. (20) obvi-
ously holds.

Case 2. n is odd. According to Lemma 1,

T′1(n)/T1(n) = 1/2 +

(n − 1)(n − 2)
2

(
n − 3

(n − 3)/2

)
T1(n)

.

(A· 26)

According to Lemma 2, given an even number n − 3,
we have(

n − 3
(n − 3)/2

)
∈ Θ

(
2n

√
n

)
. (A· 27)

Thus,

(n − 1)(n − 2)
2

(
n − 3

(n − 3)/2

)
∈ Θ(n1.52n). (A· 28)

Since T1(n) = (n − 1)(n − 2)2n−3 ∈ Θ(n22n), we obtain

lim
n→∞

T′1(n)/T1(n) = 1/2. (A· 29)

Thus, by the two cases above, Theorem 3 holds.

Appendix D: Proof of Theorem 4

Proof. We show a proof for Eq. (22). As for Eq. (23), we
omit the proof but it can be presented in a similar manner.

First, L′tsp(n) can be expressed as follows.

L′tsp(n) =
⌈n/2⌉∑
k=1

k

(
n − 1

k

)
. (A· 30)

By applying Lemma 3 to Eq. (A· 30), we obtain

L′tsp(n) = (n − 1)
⌈n/2⌉∑
k=1

(
n − 2
k − 1

)

= (n − 1)
⌈n/2⌉−1∑

l=0

(
n − 2

l

)
. (A· 31)

We then consider two cases.

Case 1. n is even. Since n−2 is an even number, there is an
integer m such that 2m = n − 2. Therefore, ⌈n/2⌉ − 1 =
m. Using these equations, we have

⌈n/2⌉−1∑
l=0

(
n − 2

l

)
=

m∑
l=0

(
2m
l

)
. (A· 32)

Applying Lemma 4 to Eq. (A· 32), we obtain

⌈n/2⌉−1∑
l=0

(
n − 2

l

)
= 22m−1 +

1
2

(
2m
m

)
= 2n−3 +

1
2

(
n − 2

(n − 2)/2

)
. (A· 33)

Therefore,

L′tsp(n) = (n − 1)
⌈n/2⌉−1∑

l=0

(
n − 2

l

)
= (n − 1)2n−3 +

n − 1
2

(
n − 2

(n − 2)/2

)
= Ltsp(n)/2 +

n − 1
2

(
n − 2

(n − 2)/2

)
. (A· 34)

According to Lemma 2, given an even number n − 2,
we have(

n − 2
(n − 2)/2

)
∈ Θ

(
2n

√
n

)
. (A· 35)
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Thus,

n − 1
2

(
n − 2

(n − 2)/2

)
∈ Θ(

√
n2n). (A· 36)

Since Ltsp(n) = (n − 1)2n−2 ∈ Θ(n2n), we obtain

lim
n→∞

L′tsp(n)/Ltsp(n)

= lim
n→∞

1/2 +

n − 1
2

(
n − 2

(n − 2)/2

)
Ltsp(n)

 = 1/2. (A· 37)

Case 2. n is odd. Since n − 2 is an odd number, there is an
integer m such that 2m + 1 = n − 2. Therefore, ⌈n/2⌉ −
1 = m + 1. Using these equations, we have

⌈n/2⌉−1∑
l=0

(
n − 2

l

)
=

m+1∑
l=0

(
2m + 1

l

)

=

m∑
l=0

(
2m + 1

l

)
+

(
2m + 1
m + 1

)
.

(A· 38)

Applying Lemma 4 to Eq. (A· 38), we obtain

⌈n/2⌉−1∑
l=0

(
n − 2

l

)
= 22m +

(
2m + 1
m + 1

)
= 2n−3 +

(
n − 2

(n − 1)/2

)
. (A· 39)

According to Lemma 3,(
n − 2

(n − 1)/2

)
=

2(n − 2)
n − 1

(
n − 3

(n − 3)/2

)
. (A· 40)

Therefore,

L′tsp(n) = (n − 1)
⌈n/2⌉−1∑

l=0

(
n − 2

l

)
= (n − 1)

{
2n−3 +

2(n − 2)
n − 1

(
n − 3

(n − 3)/2

)}
= (n − 1)2n−3 + 2(n − 2)

(
n − 3

(n − 3)/2

)
= Ltsp(n)/2 + 2(n − 2)

(
n − 3

(n − 3)/2

)
. (A· 41)

According to Lemma 2, given an even number n − 3,
we have(

n − 3
(n − 3)/2

)
∈ Θ

(
2n

√
n

)
. (A· 42)

Thus,

2(n − 2)

(
n − 3

(n − 3)/2

)
∈ Θ(

√
n2n). (A· 43)

Since Ltsp(n) = (n − 1)2n−2 ∈ Θ(n2n), we obtain

lim
n→∞

L′tsp(n)/Ltsp(n)

= lim
n→∞

1/2 +

2(n − 2)

(
n − 3

(n − 3)/2

)
Ltsp(n)

 = 1/2.

(A· 44)

Thus, by the two cases above, Lemma 4 holds.
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