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Abstract. In this paper, we propose an out-of-core branch and bound
(B&B) method for solving the 0-1 knapsack problem on a graphics pro-
cessing unit (GPU). Given a large problem that produces many subprob-
lems, the proposed method dynamically swaps subproblems out to CPU
memory. We adopt two strategies to realize this swapping-out procedure
with minimum amount of CPU-GPU data transfer. The first strategy is
a GPU-based stream compaction strategy that reduces the sparseness
of arrays. The second strategy is a double buffering strategy that hides
the data transfer overhead by overlapping data transfer with GPU-based
B&B operations. Experimental results show that the proposed method
can store 33.7 times more subproblems than the previous method, solv-
ing twice more instances on the GPU. As for the stream compaction
strategy, an input-output separated scheme runs 13.1% faster than an
input-output unified scheme.
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1 Introduction

The 0-1 knapsack problem [1], a combinatorial optimization problem, appears
in a wide range of fields such as manufacturing, logistics, and finance. Given
n (> 1) items, each with its profit and weight, the problem is to determine
which item should be included in a knapsack such that the total weight is not
beyond capacity ¢ and the total profit is as large as possible:

n
maximize Zpixi
i=1
n
subject to sz% <e¢ 1€{1,2,...,n},
i=1
where p; and w; are the profit and weight of the i-th item, respectively, and

x; € {0, 1} is the binary decision variable that decides if the i-th item will be in-
cluded or not: z; = 1 if included and z; = 0 otherwise. The B&B [2] approach, a



Fig. 1. A search tree of B&B approach. In this figure, node P; refers to the i-th sub-
problem. Especially, the root Py refers to the original problem. Pruned subproblems
(i-e., passive subproblems) are marked with “X.”

widely-known scheme for obtaining optimal solutions for NP-hard combinatorial
optimization problems, is the most common way to effectively find the opti-
mal solutions of knapsack problems [1]. This iterative scheme reduces the search
space by using upper and lower bounds updated every time iterations continue.
Each iteration consists of branching, bounding, and pruning operations. The
branching operation decomposes a problem into multiple small subproblems.
The bounding operation then computes the lower and upper bounds for each
subproblem. Finally, the pruning operation discards unpromising (passive) sub-
problems whose upper bounds are smaller than the best solution found so far.
The remained promising (active) subproblems proceed to the next iteration to
further apply these three operations. The outline of B&B approach is shown in
Fig. 1.

Many B&B approaches successfully solved knapsack problems by exploit-
ing data parallelism using various parallel machines such as single-instruction
multiple-data (SIMD) machines [3], cluster systems [4], computational grids [5,
6], and graphics processing units (GPUs) [7-10]. Among these parallel machines,
the GPU [11] is a powerful accelerator device for not only graphics applications
but also compute- and memory-intensive applications [12,13]. However, the ca-
pacity of GPU memory, 12 GB for example, is relatively small as compared
to that of CPU memory. Furthermore, previous GPU-based methods use the
GPU memory to manage subproblems, so that these methods fail to solve large
problems that rapidly consume GPU memory due to splitting subproblems.

Therefore, in this paper, we present an out-of-core B&B method for solv-
ing large 0-1 knapsack problems that exhaust the GPU memory due to many
subproblems to be investigated. Our out-of-core method relaxes the limitation
of problem size (i.e., maximum number of subproblems) from the capacity of
GPU memory to that of CPU memory. To solve a large problem, our method
buffers the data of subproblems in the CPU memory rather than the GPU mem-
ory. However, such a CPU-centric subproblem management scheme increases the
CPU-GPU data transfer that impairs the performance of GPU acceleration. For
the purpose of alleviating this side effect, we integrate two optimization strate-
gies into our method: (1) a stream compaction strategy accelerated on the GPU
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Fig. 2. An array-based subproblem management scheme. Pruned subproblems (i.e.,
passive subproblems) marked with “X” make the array sparse as the depth of the
search tree increases.

completely and (2) a double buffering strategy required for efficient pipelining.
Stream compaction here is an important process that converts sparse arrays into
dense arrays for reducing the data to be transferred as well as achieving full uti-
lization of massive GPU cores. In order to find an efficient scheme for the stream
compaction strategy, we compare a separated scheme with a unified scheme. The
separated scheme differentiates an output array from the input array to store
the compacted data. On the contrary, the unified scheme uses a single array for
both input and output. As such, the unified scheme allows the GPU to simulta-
neously process 1.5-2 times more subproblems than the separated scheme. As for
the double buffering strategy, it hides the data transfer overhead by overlapping
data transfer with GPU-based B&B operations.

Following this introduction, Section 2 presents related studies of this paper.
Section 3 then summarizes GPU-based B&B methods. Section 4 describes our
method and Section 5 shows experimental results. Finally, Section 6 comprises
conclusion and future work.

2 Related Work

Boukedjar et al. [8] presented a B&B approach that solves the 0-1 knapsack
problem on a GPU. Their method managed subproblems in the GPU memory
with arrays standing for subproblems. Their method describes a subproblem
with several attributes such as the upper and the lower bounds of profit, and
currently obtained profit and weight. They prepared an array for each of those
attributes. However, those arrays may get sparse after B&B operations (Fig. 2),
because elements representing passive subproblems will never be referred again.
The sparseness wastes the GPU memory with useless data and harms the lo-
cality of reference. Therefore, they integrated a CPU-based compaction strategy
into their method for reducing the sparseness. The basic idea for their com-
paction strategy is to exchange passive elements and active elements with a
quicksort-wise scheme, so that all the active subproblems are stored continuously
in the front of the array. Because this is a CPU-based sequential operation, their



method transfers all attributes from the GPU memory to the CPU memory ev-
ery time the compaction proceeds. Therefore, CPU-GPU data transfer remains
as a performance bottleneck.

To reduce the amount of data transfer between the CPU and GPU, Lalami
et al. [9] presented an extension of [8] by restricting transferred data to a single
attribute: label data (i.e., label array), where a label shows whether an element
is active (label = 1) or passive (label = 0). They focused on the data access
pattern required for compaction. That is, any attribute array generates the same
pattern as those generated by other attribute arrays. As such, they computed the
pattern on the CPU, according to the label data, and reused that information
to carry out stream compaction for every attribute array on the GPU. This
extension successfully doubled the performance compared to the baseline method
[8]. However, it is still inevitable to transfer data between the GPU and the CPU
every time the stream compaction proceeds. Moreover, their method can solve
larger problems if subproblems are managed in the CPU memory.

Carneiro et al. [14] presented a GPU-accelerated B&B approach that uses a
hybrid scheme of breadth first search and depth first search to solve the sym-
metric traveling salesman problem. Their method initially performs breadth first
search on the CPU to generate many initial subproblems to be examined in par-
allel. After that, the method switches to depth first search that processes B&B
operations on the GPU. However, similar to [8], the stream compaction strategy
was not integrated into this approach.

3 B&B Approach for Solving Knapsack Problem

The branching operation of the B&B approach is to divide one n-variable (item)
problem into two (n — 1)-variable subproblems. These two subproblems respec-
tively stand for the two cases of decision for the i-th item, where 1 < ¢ < n. For
an n-item knapsack problem, from the first item to the last item, we iteratively
divide one problem into two subproblems with a breadth-first search scheme.

On the other hand, the bounding operation is to reduce the search space
by judging each subproblem whether it is possible to get an optimal solution
or not. For this purpose, the bounding operation computes the upper and the
lower bounds for every existing subproblem. A subproblem whose upper bound is
smaller than the best (i.e., biggest) lower bound is passive and must be deleted
from the search space. In the following discussion, we assume that items are
sorted according to decreasing profit per ratio. This assumption facilitates lower
bound computation mentioned below. Let k£ be the index of the current item to
be examined for decision. Let also I,, be the set of items picked for a subproblem,
i.e., a vertex v in the search tree. The weight and profit of vertex v, W,, and P,,
respectively, then can be computed as follows:

W, = Zie[u Wi, (1)

P, = Zie]z, Di. (2)



A vertex v can be described as a tuple (W, P,,U,, L, S,), where U, and L,
represent an upper and lower bounds of the vertex, respectively, and 5, is the
slack variable [9] for the vertex such that

Sy—1 S,
g w; < e—wy < E w;. (3)
i=k+1 i=k+1

That is, the slack variable S, is determined by picking all items after the k-th
item as long as the knapsack can. Using the slack variable, the residual capacity
r of the knapsack is given by:

Sy—1
r=c—W, — w. (4)
i=k+1

A lower bound L, can be obtained by picking the abovementioned items (i.e.,
from k + 1 to S, — 1) and others in a greedy manner:

S,—1 n
Ly=P,+ Y pi+ Y piwi, (5)
i=k+1 i=k+1

where x; = 1 if w; <r — z;_:gvﬂ w;z;. With respect to an upper bound U,,
on the other hand, we adopt the Dantzig bound [15] that can be given by:

Sy—1

Uy=P,+ Y pi+|rPs,/Ws,]. (6)
i=k+1

4 Proposed Method

The proposed method deploys a CPU-centric subproblem management scheme
that exploits the large capacity of the CPU memory to relax the limitation
of problem size. However, this out-of-core method can increase the amount of
CPU-GPU data transfer, so that we integrate two strategies into our method to
mitigate this side effect. The first strategy is a stream compaction strategy that
proceeds on GPU completely. As such, it eliminates the data transfer for the
pattern computation and increases the parallelism of the pattern computation,
compared to [9]. The second strategy is a double buffering strategy that pipelines
a series of operations. The strategy hides the overhead of CPU-GPU data trans-
fer by overlapping the GPU-based B&B operations with the CPU-GPU data
transfer.

4.1 CPU-centric Subproblem Management

For an efficient CPU-centric subproblem management, the data structure that
stores subproblems must satisfy two requirements.



(1) The data structure must be accessed randomly by a GPU thread with O(1)
time.
(2) The data structure stores subproblems continuously without fragmentation

in order to improve the efficiency of direct memory access (DMA) required
for CPU-GPU data transfer.

To satisfy requirement (1), we choose arrays as a buffer for storing subproblems
in the CPU memory. To satisfy requirement (2), we organize the buffer in a
circular manner with two pointers: pointer head pointed to the first subproblem
in the buffer and pointer tail pointed to the position behind the last subproblem
in the buffer. For every iteration, we transfer a series of subproblems that be-
gin with the subproblems pointed by head from the CPU memory to the GPU
memory in order to process GPU-based B&B operations. On the other hand,
when we predict that the GPU memory will be exhausted after the next branch-
ing operation, we transfer the subproblems from the GPU memory to the CPU
memory, stored from the position pointed by tail. Every time a data transfer
operation proceeds, the position of head or tail (according to the operation) is
updated by an increment of the amount of transferred data. Furthermore, the
circular manner means that if we reach the last position of the buffer during
transferring data, we turn to its first position again. However, in this occasion,
we must call the data transferring function once more, because of the change of
the baseline address.

These transfer and computation jobs proceed iteratively until all the sub-
problems are finished, meaning that decision of the last item, i.e., x,, is done
for every subproblem. Moreover, the proposed method either prunes a finished
subproblem if it is judged as passive, or set aside the finished subproblem if it
is judged as active currently. In no case does the proposed method branch a
finished subproblem.

4.2 Stream Compaction Strategy

To avoid extra CPU-GPU data transfer when computing the data access pattern
required for compaction, we adopt a stream compaction strategy that proceeds
on the GPU completely. Our stream compaction strategy computes the data
access pattern on the GPU instead of the CPU. Moreover, we compare two
stream compaction variations, a separated scheme and a unified scheme. The
separated scheme requires that the input array (i.e., the array to be compacted)
is separated from the output array. As such, the separated scheme consumes
more GPU memory than the unified scheme. However, the separated scheme
is cogent and it avoids any preprocess. On the other hand, the unified scheme
compacts the input array within itself, instead of using a separated output array.
Therefore, given that we adopt a double buffering strategy, the buffer size of the
unified scheme is 1.5 times bigger than that of the separated scheme. However,
the unified scheme requires a preprocess phase for compaction, which incurs an
extra overhead. The details of both schemes are presented below.
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Fig. 3. An overview of the separated stream compaction scheme. In this figure, P;
refers to an active subproblem while Q; refers to a passive subproblem. In step (1),
we associate active and passive subproblems with 1 and 0, respectively. In step (2), we
then apply the computation of prefix sums to the array of labels, in order to obtain
the array of prefix sums that indicates where to move the active subproblems (i.e., the
data access pattern). Finally, in step (3), we contiguously pack the active subproblems
into the output array according to the array of prefix sums.

Separated Scheme. The separated stream compaction is a filtering process.
The elements that meet the requirements will be selected from the input array,
and then be packed into the output array. Generally, the compaction process is
done in three steps (Fig. 3): (1) preparation of the array of labels, (2) compu-
tation of prefix sums, and (3) packing procedure. We use the thrust library [16]
to implement prefix sums computation.

Unified Scheme. The unified scheme overwrites the input array by immedi-
ately moving some active elements onto passive elements (Fig. 4). The general
idea is to calculate the number of active elements n, that is used as a border
index. We can predict that all active elements will be stored in the first n, el-
ements of the input array after compaction. Thus, we only need to move the
active elements stored after the border index onto the passive elements stored
before the border index. The unified scheme requires preparation of the array
of labels, computation of prefix sums, and packing procedure, the same as the
separated scheme. Besides, the unified requires a preprocess phase before the
packing procedure. This preprocess phase consists of two steps:

(1) The unified scheme computes the number of active elements (n,) that is
used as the border index.

(2) The unified scheme associates active elements with passive elements by cal-
culating the order number of every active element stored after the border
index and the order number of every passive element stored before the bor-
der index. For instance, the i-th active element stored after the border index
is associated with the i-th passive element stored before the border index.
By doing so, the unified scheme prepares a lookup table for looking up the
destinations where the active elements should be moved.

Algorithm 1 describes the lookup table preparation procedure.
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Fig. 4. An overview of the unified stream compaction scheme based on a lookup table.

Algorithm 1: Preparation for a lookup table.

Input: (1)Labels, the array of labels and (2) Sums, the array of prefix sums
Output: Table, the lookup table
1 :=threadl D
if n, <17 then
return
end if
1 := Labelsli]
if | =0 then
passive_order_number := i — Sums]i]
Tablelpassive_order_number| := i
end if
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4.3 Double Buffering Strategy

In order to hide the overhead of CPU-GPU data transfer, we realize a double
buffering strategy that overlaps the CPU-GPU data transfer with GPU-based
B&B operations using two CUDA streams (Fig. 5). A CUDA stream here is a
sequence of operations that execute in issue-order on the GPU [17]. The data
transfer proceeds on a stream using buffer A while the GPU-based B&B oper-
ations proceed on the other stream using buffer B. When operations on both
streams complete, the strategy exchanges the references of buffer A and buffer B
(i.e., pointer A and pointer B in Fig. 5), and then proceeds to the next iteration
of this overlapped transfer and computation procedure until finishing processing
all subproblems left in the circular buffer. However, before the next iteration,
the strategy must synchronize both streams to ensure operations of the current
iteration have finished. We carry out synchronization to prevent both streams
from simultaneous data transfer, lest the circular buffer is inconsistent.

Besides, we appropriately use two execution modes according to the number
of subproblems managed on the CPU. If the circular buffer lacks sufficient sub-
problems to fully exploit the massive parallelism on the GPU, we only use CPU
to process the branching, bounding, and pruning operations. We use GPU to
process the operations otherwise. We experimentally determined 24,576 as the
threshold number of subproblems that triggers changing the execution mode.
The threshold number may vary under different environments.
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Fig.5. An overview of the double buffering strategy, which overlaps the CPU-GPU
data transfer with GPU-based B&B operations using two CUDA streams.

5 Experimental Results

We conducted experiments to evaluate the proposed method in terms of the prob-
lem size and the execution time. We used Lalami’s method [9] as a comparable
method. Both the proposed method and the previous method are honestly im-
plemented with the same optimization techniques. As for the stream compaction
strategy, we compared the separated scheme with the unified scheme in terms
of the performance. For datasets, we used a suite of benchmarking datasets [18,
19] shown in Table 1. We used strongly correlated instances with up to n = 1000
items, where the weight of each item mainly determines its profit. Such instances
can be efficiently parallelized because of enormous combinations of items that
may be an optimal solution, and therefore, represent the most difficult problems.
We generated 20 different instances for each n.

Table 2 shows the specifications of two experimental machines. We prepared
two machines equipped with different capacities of GPU memory: 2 GB and
12 GB for machines 1 and 2, respectively. These capacities were relatively small
for the datasets, which consumed at most 20 GB of memory space. Both ma-
chines ran on the Ubuntu 14.04 with CUDA 7.5 [20]. Besides, the version of
thrust library [16] was 1.8.3.

Table 1. Experimental datasets.

Parameter Value
pi: profit of the i-th item w; + 1000 + random(—20, 20)
w;: weight of the i-th item  random(1, 10000)

c: knapsack capacity Z w; * 100/1001
=1




Table 2. Specification of experimental machines.

Machine 1 Machine 2

CPU Intel Core i7-6700 Intel Xeon E5-2660 v3

CPU memory capacity 32 GB 64 GB

GPU GeForce GTX 680  GeForce GTX Titan X
Kepler Pascal

GPU memory capacity 2 GB 12 GB

GPU driver version 375.39 352.39

PClIe Controller gen3d x16 gen3d x16

5.1 Robustness Against the Increase of Problem Size

We prepared ten classes of instances, varying from 100 items to 1000 items. We
generated 20 different instances for each class. In this experiment, we allocated
an array of 20 GB for the circular buffer. On the other hand, two arrays of total
2 GB were used for processing B&B and stream compaction operations on the
GPU. As shown in Fig. 6, our CPU memory subproblem management scheme
successfully solved more instances, demonstrating more robustness against the
increase of problem size. This robustness is noticeable especially for the “prop-
erly” large instances, varying from 400 items to 700 items. However, there was
no significant difference for the instances of more than 700 items because sharply
increasing subproblems beat the capacity of CPU memory, resulting in a mem-
ory exhaustion. Moreover, we can conclude that our out-of-core method solved
33.7 times more subproblems than the previous in-core method. For example,
our method successfully stored 845,940, 791 subproblems at a time, whereas the
number of subproblems was limited by 25,096,462 in the previous method.

5.2 Performance Comparison

For each instance class, from the instances which can be solved by both meth-
ods, we selected a representative one to compare the execution time of the two
methods. For example, presuming that in the 700-item instance class there were
three instances which can be solved by both methods, we first computed the av-
erage execution time of the three instances processed by the previous method.
We then selected the instance whose execution time was nearest to the average
execution time (Fig. 7). Obviously, the instances that can be solved by both
methods did not produce so many subproblems that exhaust the GPU memory,
thus, there is no extra data transfer for swapping-out operations. Our method
achieved a higher performance because our stream compaction strategy (with
the separated scheme) was completely processed on the GPU in parallel. As
presented in Sect. 2, the previous stream compaction strategy computed data
access pattern on the CPU, sequentially instead of in parallel, and it required to
transfer the array of label between the CPU and GPU. Therefore, our stream
compaction strategy ran 4.5 times faster than the previous strategy, shortening
the total execution time by 26% on average.
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5.3 Comparison of Separated and Unified Schemes

In this experiment, we allocated 1 GB (i.e., half) of GPU memory because the
experimental machine 1 had only 2 GB GPU memory. Thus, we thought the
efficiency of GPU memory usage would be more important. As for the CPU
memory, the same amount (20 GB) was used for execution. We compared the
execution time of both schemes by selecting a representative instance for each
instance class in the same manner described in Sect. 5.2. As we metioned above,
the buffer size of the unified scheme is 1.5 times larger than that of the separated
scheme. Consequently, the unified scheme allowed 26.2 million subproblems to
be processed at a time on the GPU, while the separated scheme allowed 17.4
million subproblems (Fig. 8).

According to the result, the execution time of GPU-based B&B operations
(that are overlapped with data transfer) of the separated scheme was 12.3%
shorter than that of the unified scheme. The execution time of stream compation
of the separated scheme was 19.6% shorter than that of the unified scheme.
Totally, the separated scheme was 13.1% faster than the unified scheme. We
therefore concluded that the separated scheme is better than the unified scheme
from the aspect of performance.

6 Conclusion

In this paper, we presented a GPU-accelerated, out-of-core B&B method for
solving the 0-1 knapsack problem. The maximum problem size depends on the
capacity of the CPU memory rather than that of the GPU memory. To realize
this relaxation, our method buffers active subproblems in the CPU memory in-
stead of the GPU memory. Because such a CPU-centric management scheme can



suffer from increased amount of data transfer between the CPU and GPU, our
method minimizes the data transfer overhead by a stream compaction strategy
and hides the minimized overhead by a double buffering strategy that overlaps
data transfer with GPU-based B&B operations.

In our experiments, we found that our out-of-core method stored 33.7 times
more subproblems at a time, solving twice more problems than a previous in-core
method. We also found that our completely CPU-based compaction strategy was
4.5 times faster than the previous compaction strategy. Moreover, we determined
that the separated scheme was better because the separated scheme ran 13.1%
faster than the unified scheme.

Our future work includes investigation of more sophisticated ways to traverse
the search tree, e.g., dynamically choosing breadth first search and depth first
search, which improves robustness against rapidly growing subproblems.
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