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Abstract—In this paper, aiming at realizing directive-based
temporal blocking for out-of-core stencil computation, we present
an extension of OpenACC directives and a source-to-source
translator capable of accelerating out-of-core stencil computation
on a graphics processing unit (GPU). Out-of-core stencil compu-
tation here deals with large data that cannot be entirely stored
in GPU memory. Given an OpenACC-like code, the proposed
translator generates an OpenACC code such that it decomposes
large data into smaller chunks, which are then processed in a
pipelined manner to hide the data transfer overhead needed for
exchanging chunks between the GPU memory and CPU memory.
Furthermore, the generated code is optimized with a temporal
blocking technique to minimize the amount of CPU-GPU data
transfer. In experiments, we apply the proposed translator to
three stencil computation codes. The out-of-core performance on
a Tesla K40 GPU reaches 73.4 GFLOPS, which is only 13%
lower than the in-core performance. Therefore, we think that
our directive-based approach is useful for facilitating out-of-core
stencil computation on a GPU.

I. INTRODUCTION

Stencil computation is a class of iterative computation that
frequently appears in scientific applications of a wide range
of fields, including computational fluid dynamics [24], com-
putational electromagnetics [1], image processing [5], and so
on. This iterative computation typically updates array elements
according to a fixed pattern, called stencil. For example,
finite-difference methods have been widely used for solving
partial differential equations that describe the time evolution
of variables. In general, stencil applications are regarded as
memory-intensive applications [6], [7], [19]. Therefore, many
stencil codes have been implemented on accelerator devices,
such as the graphics processing unit (GPU) [16] and Xeon
Phi [8], which typically provide a 5 times higher memory
bandwidth than the CPU.

Accelerator codes are usually developed with a unique
programming language to maximize the performance on ac-
celerator devices. For example, the compute unified device
architecture (CUDA) [16] is widely used for NVIDIA GPUs.
The CUDA code consists of the host code and the device code,
each running on the CPU and the GPU, respectively. The key
for achieving acceleration is to locate the performance bottle-
neck of the sequential code so that the bottleneck operations
can be offloaded to the accelerator device with device-specific

optimization techniques. However, this offloading process is
time consuming because code and data structures usually have
to be entirely rewritten to adapt themselves to the device archi-
tecture. Moreover, application developers are again enforced to
rewrite their device-specific code when a new architecture will
be released in the future. From this point of view, scientific
codes should retain performance portability such that the codes
achieve high performance on different architectures.

Such tremendous efforts can be minimized by directive-
based programming (see Fig. 1), namely an emerging approach
for developing parallel codes on an accelerator device. For
example, OpenACC [20] provides a collection of compiler
directives that are useful for offloading bottleneck workloads
to an accelerator device. In other words, directives repre-
sent architecture-specific description, so that the architecture-
dependent code is clearly separated from the generic code,
which expresses the essentials of computation. Thus, Open-
ACC significantly lowers the barrier to accelerated com-
puting. However, typical OpenACC-based implementations
assume that the entire data are stored in device memory,
which compromises the directive-based approach. Because
the device memory generally has a smaller capacity than the
host memory, OpenACC-based implementations usually fail to
solve a large problem that has been processed by CPU-based
implementations.

To relax this restriction, we developed a directive-based
framework, named pipelined accelerator (PACC) [10], capable
of pipelined execution of large-scale stencil computation on a
GPU. According to PACC directives, our translator generates
an OpenACC code such that large data are automatically
decomposed into smaller chunks, which are then processed
in a pipelined manner to overlap CPU-GPU data transfer with
kernel execution. Thus, PACC directives are useful for solving
a problem of the same size as that processed by CPU-based
implementations. However, data decomposition increased the
amount of CPU-GPU data transfer, which limited the perfor-
mance of stencil applications, particularly those solving time
evolution problems.

In this work, aiming at reducing the amount of data transfer
between the CPU and GPU, we extend PACC directives [10]
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Fig. 1. Directive-based programming flow.

such that both data decomposition and temporal blocking
can be automatically applied to stencil computation on a
CUDA-compatible GPU. Given a sequential C code with
PACC directives, our source-to-source translator generates
an OpenACC code that can efficiently accelerate large-scale
stencil computation with temporal blocking. The generated
code can be rapidly processed on a GPU with several execution
parameters such as the number of data decompositions. We
apply the presented translator to three stencil computation
codes [4] to investigate the impact of execution parameters.

The paper is structured as follows. Section II introduces
related work regarding on acceleration of stencil computation.
Section III presents an overview of temporal blocking and then
summarizes how this optimization technique can be applied to
an OpenACC code. Section IV describes the proposed PACC
directives and translator. Section V shows experimental results.
Finally, Section VI concludes the paper with future work.

II. RELATED WORK

Maruyama et al. [12] presented a programming framework,
named Physis, which provided a domain specific language
(DSL) based solution to stencil computation. Given a DSL-
based code, Physis generates a CUDA code for multi-node
systems, where computing nodes communicate each other with
the Message Passing Interface (MPI) standard [13]. Further,
they extended Physis to automatically apply temporal blocking
to the generated code [9]. This DSL-based approach is sim-
ilar to our directive-based approach because both approaches
facilitate acceleration of stencil computation. However, the
directive-based approach is more useful for achieving this
common goal with less efforts because directive-based ap-
proach keeps the original structure of the sequential code; there
is no need to adapt the code to the target DSL.

Endo et al. proposed a run-time library, called hybrid
hierarchical runtime (HHRT) [2], which allows CUDA+MPI
codes to deal with out-of-core data with temporal blocking
[3]. The HHRT library virtualized the GPU memory with
automated swapping to the CPU memory. Because the HHRT
library requires a CUDA code as its input, more efforts
are necessary to achieve parallelization on the GPU. Our

directive-based approach avoids this time-consuming process
but execution efficiency can be degraded due to higher-level
of code description. For example, low-level optimization such
as intrinsic functions [16] is not explicitly available from an
OpenACC code.

XcalableACC [15], a hybrid model of the OpenACC and a
partitioned global address space (PGAS) language [14], [25],
realizes directive-based programming for multi-node accelera-
tor systems. Similar to our approach, their approach is useful
for implementing a highly-efficient portable code by adding
directives to a sequential code. Although the XcalableACC
code efficiently runs on multi-node systems with minimum
programming efforts, code structure must be modified to use
temporal blocking, which is the key technique to minimize the
amount of data transfer between the host and device.

OpenMP [21] provides a collection of directives that are
useful for implementing multithreaded parallel applications on
shared memory architectures such as multi-core CPUs. The
latest OpenMP 4.5 supports accelerators with OpenACC-like
directives. However, the host data cannot be partially mapped
to the device data. Therefore, large problems cannot be solved
due to device memory exhaustion.

Finally, NVIDIA has recently announced their latest archi-
tecture, called Pascal (P100) [18], which provides a single,
unified virtual address space for CPU and GPU memory. This
capability is useful to realize out-of-core stencil computation
with a low effort. However, pipelined execution requires
prefetching of chunks to overlap kernel execution with CPU-
GPU data transfer. It is not clear whether such a software
pipeline can be easily implemented with maintaining the
original structure of the sequential code; the P100 architecture
is not available at this time.

III. STENCIL COMPUTATION AND TEMPORAL BLOCKING

Temporal blocking is a cache optimization technique for
stencil applications that solve time evolution problems. This
technique saves the memory bandwidth by performing reuse
of on-cache data. To do so, the computational domain is
decomposed into smaller blocks such that each block evolves
k contiguous time steps at a time before proceeding to the next
block. Hereafter, we call parameter k as the blocking factor.
There are several approaches for realizing temporal blocking.
In this paper, we consider an overlapped tiling approach for
its simplicity. Other temporal blocking approaches such as
wavefront temporal blocking and diamond tiling are useful for
eliminating halos mentioned below (i.e., overheads in terms of
computation at block boundaries).

Figure 2 shows an example code of four-point stencil
computation. In this example, a four-point stencil is applied
to X × Y elements stored in a two-dimensional (2-D) array
(see Fig. 3); updating an element refers to itself together with
its four neighbors. To realize block-based time evolution, the
original t loop in Fig. 2 must be reorganized into double
nested loops; the inner loop evolves k time steps within a
block and the outer loop evolves every k time step for blocks.



1 for (t=0; t<T; t++) { // time evolution
2 for (x=1; x<X-1; x++) {
3 for (y=1; y<Y-1; y++)
4 q[x][y] = (p[x-1][y] + p[x+1][y] + p[x][y-1] + p[x][y

+1]) * 0.25;
5 }
6 swap(p, q);
7 }

Fig. 2. Pseudocode of four-point stencil computation.
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Fig. 3. Overview of stencil computation. (a) X × Y elements in the
computational domain are updated with (b) a four-point stencil stored in a
3 × 3 region. (c) As compared with the original stencil in (b), applying
temporal blocking refers more neighboring elements to compute the target
element (k = 2, in this example).

Thus, temporal blocking exploits temporal locality to take
advantage of caches, which have a low latency but with
a limited capacity compared to the CPU memory. Such a
tradeoff relation can be found between the CPU memory and
GPU memory. Consequently, temporal blocking is frequently
used for GPU-based implementations to reuse data blocks that
have been transferred to the GPU memory. Evolving k time
steps within the transferred data blocks reduces the amount of
CPU-GPU data transfer to 1/k.

Notice here that multiple updates within a block require a
halo region around the block (see Fig. 4) because updating
an element refers to its surrounding neighbors. Without this
halo region, blocks cannot be processed independently, and
thereby, preventing full parallelization. Suppose that a cross
stencil is stored in a (2r+1)×(2r+1) region, i.e., updating an
element refers to itself and its r neighbors in up/down/left/right
directions: r = 1 for a four-point stencil, as depicted in
Fig. 3(b). In this case, k updates for an element refers to its
(2rk+1)× (2rk+1) region (Fig. 3(c)). This means that tem-
poral blocking increases the amount of computation because
halo regions of adjacent blocks overlap each other. Thus, there
is a tradeoff relation between the amount of computation and
the degree of available parallelism. Consequently, the blocking
factor k must be optimized to maximize the performance gain
of temporal blocking.

Hereafter, we use the term chunk to denote the region that
contains a block and its overlapping halo region (Fig. 4).

A. OpenACC-based implementation

In this section, we present how data decomposition and
temporal blocking can be applied to an OpenACC-based
stencil code. In other words, the OpenACC code presented
here is the output of our translator, which requires a PACC
code as its input.
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Fig. 4. A 1-D block decomposition scheme with halo region. Given a stencil
of (2r + 1)× (2r + 1) elements, each block requires halos of size rk × Y
to evolve k time steps for all elements within the block.
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Fig. 5. A copy-based scheme for data decomposition. Host and device buffers
are allocated for copying blocks and their halos from the original array.

1) Data decomposition: Data decomposition cannot be
realized by simply adding OpenACC directives into the se-
quential code. Given a large array that exceeds the capacity
of the device memory, a different array must be allocated in
the host memory, as depicted in Fig. 5. This is due to the
assumption of the OpenACC specification, which allocates the
same variables on both the host memory and device memory.
In this figure, large array p can be successfully processed on
the GPU by copying chunks (i.e., blocks and their halos) to
different buffers buf_p; memory exhaustion can be avoided
if the total buffer size is smaller than the capacity of device
memory. One drawback of this copy-based scheme is the copy
overhead incurred on the host. However, this overhead can be
hidden by pipelined execution, which overlaps the overhead
with data transfer and kernel execution.

An alternative solution for avoiding device memory exhaus-
tion is a map-based scheme, which maps the allocated device
buffers to the original host array. This direct mapping allows
GPU threads to update values in the original array, so that
the host buffer (i.e., the copy overhead) can be eliminated.
However, we decided to use the copy-based scheme because
the map-based scheme failed to asynchronously transfer data
on our experimental environment (see Section V); pipelined
execution was not available with this scheme. Another draw-
back of the map-based scheme is that it may fail to realize mul-
tidimensional decomposition, which produces many mapping
points; direct mapping is mainly designed for a contiguous
memory region.

Figure 6 shows a pseudocode of OpenACC-based out-of-



1 Set blocking factor k, number d of decompositions, and number num_queue of queues from environmental variables;
2 Compute block size b from d and data size X;
3 Allocate buf_p[0], buf_p[1], ..., buf_p[num_queue-1] on host memory;
4 #pragma acc create (buf_p[0:num_queue][0:b+2*r*k], ...)
5 Allocate g[0], g[1], ..., g[num_queue-1] on host memory to store completed chunk numbers;
6
7 for (t=0; t<T; t+=k) { // outer loop for time evolution
8 for (c=0; c<d; i = (i+1) % num_queue) { // for each chunk
9

10 if (!acc_async_test(i)) // Select i as the ID of an idle queue
11 continue;
12
13 if (g[i] != NONE) {
14 Copy the g[i]-th chunk from buf_p[i] to p;
15 g[i] = NONE;
16 }
17
18 Copy the c-th chunk from p to buf_p[i];
19 #pragma acc update device (buf_p[i:1][0:b+2*r*k], ...) async (i)
20
21 for (s=0; s<k; s++) { // inner loop for time evolution
22 #pragma acc kernels present (buf_p[i:1][0:b+2*r*k], ...) async(i)
23 {
24 offset = r*(s+1);
25 xsize = b+2*r*(k-1-s);
26
27 #pragma acc loop independent
28 for (x=offset; x<offset+xsize; x++)
29 #pragma acc loop independent
30 for (y=1; y<Y-1; y++)
31 #pragma acc loop independent
32 for (z=1; z<Z-1; z++)
33 buf_q[i][x*Y*Z+y*Z+z] += buf_p[i][(x+1)*Y*Z+y*Z+z] + ...;
34 }
35 #pragma acc kernels present (buf_p[i:1][0:b+2*r*k], ...) async(i)
36 {
37 #pragma acc loop independent
38 for (x=offset; x<offset+xsize; x++)
39 #pragma acc loop independent
40 for (y=1; y<Y-1; y++)
41 #pragma acc loop independent
42 for (z=1; z<Z-1; z++)
43 buf_p[i][x*Y*Z+y*Z+z] = buf_q[i][(x+1)*Y*Z+y*Z+z];
44 }
45 }
46
47 #pragma acc update host (buf_p[i:1][0:b+2*r*k], ...) async (i)
48 g[i] = c;
49 c++;
50 }
51 }
52 for (i=0; i<num_queue; i++) {// Clean up all queues
53 #pragma acc wait(i)
54 if (g[i] != NONE)
55 Copy the g[i]-th chunk from buf_p[i] to p;
56 }

Fig. 6. Pseudocode of out-of-core stencil computation with temporal blocking. This pseudocode applies a cross stencil of (2r + 1)× (2r + 1) elements to
the computational domain of (X − 2r)× Y × Z elements. A 1-D block decomposition scheme is applied to the computational domain, so that the data is
decomposed into d blocks of size (X − 2r)/d× Y × Z.

core stencil computation that deploys a 1-D block decompo-
sition scheme and temporal blocking. At line 3, num_queue
buffers, buf_p, are allocated for the original array p, where
num_queue is the number of queues used for pipelining.
Similarly, device buffers with the same variable names are
allocated by the create clause at line 4. Note that multiple
buffers are necessary to realize efficient pipelining; a single
buffer causes data dependence between the kernel execution
and host-device data transfer, which avoids overlapped exe-
cution. Note also that these buffers are reused to minimize
the allocation overhead during program execution; the buffers
are allocated once at the beginning of an execution. At line 5,
num_queue buffers, g, are allocated to store chunk numbers.

After this allocation, chunks are copied from the original
array p to the host buffers buf_p, which are then transferred
to the device buffers buf_p by using the update clause
at line 19. Using these buffers, a kernel function is invoked
at line 22,35 to update elements in the chunks for k time
steps. To do this, a kernels construct is deployed to specify
a code block to be offloaded from the host to the device.
In addition, the present clause at line 22,35 indicates that
chunks to be accessed have already been sent to the device
buffers buf_p, so that additional data transfer can be avoided
at kernel invocation. The updated elements are then transferred
back to the host buffers at line 47. Host buffers are copied to
the original array p at line 14 when the same queue is selected



next time.
Notice that the code modification mentioned above is nec-

essary to avoid device memory exhaustion, which results in an
execution failure. Without this code modification, the original
code fails to run if array p is too large to fit in the device
memory. However, as shown in Fig. 6, this modification
reorganizes the loop structure of the original code (Fig. 2),
diminishing the benefits of directives. That is, the modified
code degrades the performance portability because it leads
to inefficient run on other machines equipped with a large-
capacity memory.

2) Temporal blocking: Efficient temporal blocking can be
implemented by realizing the following points.

• Block-based time evolution. The time evolution loop must
be separated into two loops such that one is responsible
for intra-block and the other is responsible for inter-block,
as shown in Fig. 6; the outer t loop at line 7 is responsible
for processing blocks at every k time steps while the
inner s loop at line 21 is responsible for processing a
block for consecutive k time steps. To facilitate automated
parallelization, x, y, and z loops in the code block have
a loop construct with an independent clause, which
notifies the OpenACC compiler that iterations can be
efficiently executed without synchronization.

• Pipelined execution. Asynchronous APIs are deployed
to realize software-based pipelining that overlaps kernel
execution with host-device data transfer. In Fig. 6, a
chunk is assigned to one of the num_queue asyn-
chronous queues. At line 10, a queue is tested whether
all associated operations of the queue have completed or
not using an acc_async_test API. That is, chunks
are transferred at line 19 with an async clause and
its argument i, which specifies the queue ID to be
used. As mentioned before, the host and device buffers
buf_p[i] are dedicated to the i-th queue for realizing
concurrent execution. Thus, different queues have no data
dependence between their tasks.

With respect to the tasks to be queued, each queue is
responsible for processing the following steps in order.

1) Data copy step. The host copies a chunk from the original
array to the host buffer (line 18).

2) Data transfer step (host to device). The host transfers the
copied chunk from the host buffer to the device buffer
(line 19).

3) Kernel execution step. The device iteratively executes the
kernel to evolve the transferred chunk for k time steps
(lines 21–45).

4) Data transfer step (device to host). The updated chunk
is transferred from the device buffer to the host buffer
(line 47).

5) Data copy step. The host copies the updated chunk to the
original array (line 14).

Note that the pseudocode code of Fig. 6 cannot overlap the
first step with the last step because it uses a single CPU
thread to copy data. However, the kernel execution step can

1 #pragma pacc init
2
3 #pragma pacc pipeline targetinout(p,q) size([0:X][0:Y])

halo([1:1][1:1]) async
4 for (t=0; t<T; t++){
5 #pragma pacc loop dim(2)
6 for (x=1; x<X-1; x++)
7 #pragma pacc loop dim(1)
8 for (y=1; y<Y-1; y++)
9 q[x][y] = (p[x-1][y] + p[x+1][y] + p[x][y-1] + p[x

][y+1]) * 0.25;
10
11 #pragma pacc loop dim(2)
12 for (x=1; x<X-1; x++)
13 #pragma pacc loop dim(1)
14 for (y=1; y<Y-1; y++)
15 p[x][y] = q[x][y];
16 }

Fig. 7. An example of a PACC code.

be overlapped with the data transfer if chunks are assigned
to different queues. A full overlap can be established with
multiple CPU threads, but we leave this issue for a future
work.

IV. PIPELINED ACCELERATOR (PACC)

The proposed PACC directives allow application developers
to specify key information, such as the stencil size and the data
to be decomposed, which are required to automate applying
data decomposition and temporal blocking. Moreover, several
execution parameters, such as the blocking factor k and
the number d of decompositions, can be flexibly specified
by environmental variables at the beginning of a program
execution.

Our translator assumes that the target stencil code satisfies
the following constraints.

• Constraints on data decomposition. Application develop-
ers are prohibited to manually decompose data in the
PACC code. The translator also assumes that the data
are small enough to be stored in the host memory.

• Constraints on temporal blocking. The number T of total
time steps must be fixed at the beginning of a program
execution. Accordingly, the target program is prohibited
to use a while loop to terminate its execution according
to a user-defined threshold on the error. Furthermore, the
device evolves data with k time steps at a time, so that the
intermediate values between every k time steps cannot be
accessed from the host.

A. PACC directive

The proposed PACC extends OpenACC [20] with three con-
structs: the init, pipeline, and loop constructs. Figure 7
shows an example of a PACC code that implements out-of-
core stencil computation with temporal blocking. Similar to
OpenACC directives, a PACC directive starts with #pragma
pacc. The extended directives are as follows.

• The init construct. This construct allocates host and de-
vice buffers for realizing data decomposition (see Section
III-A). Consequently, the init construct must be placed
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before the pipeline construct and the loop construct
mentioned below.

• The pipeline construct. The pipeline construct
specifies the code block to be processed in a pipeline.
In Fig. 7, the pipeline construct is applied to the
for loop at line 4, which is responsible for time evo-
lution. This construct is similar to the data construct of
OpenACC and can have additional clauses such as the
targetin, targetinout, size, and halo clauses.
The targetin and targetinout clauses define read-
only and read/write variables, respectively. The size
clause defines an array range specification with start
and length for each dimension. For example, Fig. 7
specifies size([0:X][0:Y]) at line 3 to update all
elements in an array of size X × Y . Finally, the halo
clause defines the stencil size for each dimension. In
Fig. 7, halo([1:1][1:1]) defines a four-point sten-
cil, which accesses left/right/up/down neighbors to update
an element. Finally, the async clause declares that the
code block must be asynchronously processed to realize
pipelined execution.

• The loop construct. The PACC loop construct is an
extension of the OpenACC loop construct. The extended
construct can have an extended clause, dim, which
associates the loop control variable with the dimension
of the array data. For example, the dim(2) clause at
line 5 indicates that the loop control variable x at line 6
corresponds to the second dimension of the array data;
we assume here that the first (last) dimension has the
minimum (maximum, respectively) stride between con-
secutive elements. This association is used for adjusting
the loops for decomposed data. Our translator currently
deploys a 1-D block scheme that decomposes the array
data in terms of the last dimension. In Fig. 7, the array
data will be decomposed along the x axis.

B. PACC translator

Our PACC translator was implemented using the ROSE
compiler infrastructure [11], [22], which provides a C/C++
frontend to generate an abstract syntax tree (AST) of the
input code (see Fig. 8). The generated AST is then traversed
to detect PACC directives, i.e., the nodes with the pacc
attribute. During this traverse, detected directives are parsed
to retrieve the key information given by succeeding clauses,
such as stencil size, the variables to be decomposed, and
their data size. The detected nodes are marked explicitly for

for (x=1;x<X-1;x++)

for (y=1;y<Y-1; y++)

q[x][y] = p[x][y] + … 

p = q

for (t=0;t<T;t++)

(a)
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Fig. 9. An example of AST transformation. (a) The presented translator
generates an AST from a PACC code. (b) The translator then applies code
rewrite rules to obtain an OpenACC code that can deal with large data with
data decomposition and temporal blocking.

modification, so that code rewrite rules are applied to them
in the next traversal. Finally, the modified AST is given to a
code generator to obtain the pipelined OpenACC code.

The code rewrite rules can be summarized as follows.
1) The rule for the init construct. The AST node that

corresponds to the init construct is replaced with AST
nodes that are responsible for (1) obtaining the blocking
factor k and the number d of data decompositions via
environmental variables, (2) computing the block size b
from d and the array size X to be decomposed, and (3)
allocating host and device buffers.

2) The rule for the pipeline construct. The original for
loop is reorganized into double nested for loops to
realize temporal blocking. To achieve this, as shown in
Fig. 9, the code rewrite rule replaces the AST node that
corresponds to the for loop of time evolution with AST
nodes that correspond to (1) the for loop of inter-block
evolution, (2) that of per-chunk operations, and (3) that
of intra-block evolution. Furthermore, several AST nodes
are added as children of the second AST node (i.e., per-
chunk operations) to select an idle queue, copy chunks on
the host buffers, and exchange them between the host and
device buffers. Finally, memory accesses to the original
arrays are replaced with those to the buffers by updating
the attributes of AST nodes appropriately.

3) The rule for the loop construct. This rule updates the
transformed double nested loops with new initialization
and condition to adapt the loop structure for block-based
evolution. To do this, the rule first locates the for loop
that must be updated due to data decomposition. For



TABLE I
STENCIL COMPUTATION CODES USED FOR EXPERIMENTS. NOTATIONS T , f , l, s, AND G REPRESENT THE NUMBER OF TIME STEPS, THAT OF FLOATING
POINT OPERATIONS PER ELEMENT, THE AMOUNT OF WRITES PER ELEMENT, THE AMOUNT OF READS PER ELEMENT, AND THE ARITHMETIC INTENSITY

[23], RESPECTIVELY. THE ARITHMETIC INTENSITY G IS GIVEN BY G = f/(l+ s).

Code Number of arrays Array size Data size (GB) Stencil T (step) f (FLOP) l (B) s (B) G (FLOP/B)
Jacobi 2 48, 000× 48, 000 18.4 4 point 2048 4 16 4 0.20
Himeno 14 512× 512× 1024 15.0 18 point 256 34 128 4 0.26
CIP 8 22, 000× 22, 000 15.5 9 point 256 91 120 12 0.69

example, the for loop at line 6 of Fig. 7 is selected
for updating its initialization and condition because this
loop is associated with a dim(2) clause that has the
largest value (2) as the argument of dim clauses. The
new initialization and condition is appropriately given by
variables offset and xsize, as shown in Fig. 6.

V. EXPERIMENTAL RESULTS

We added PACC directives to three stencil computation
codes and evaluated their performance on an experimental
machine. Our experimental machine had an Intel Xeon E5-
2680 v2 processor, 512 GB main memory, and a Tesla K40
GPU with 12 GB device memory. The Tesla K40 GPU had
two direct memory access (DMA) engines, so that data transfer
from the host to device was overlapped with that of the
opposite direction. We used the PGI Compiler 15.5 [17],
CUDA 7.0 [16], and Ubuntu 15.3.

The stencil computation codes used for experiments were
the Jacobi method, Himeno benchmark [4], and constraint
interpolation profile (CIP) method [26] summarized in Table I.
The Jacobi method is an iterative solver for a system of
linear equations. The Himeno benchmark is a linear solver
for 3-D pressure Poisson equations. The CIP method is a
solver for hyperbolic partial differential equations. All the
three experimental codes processed at least 15 GB of data,
which could not be stored entirely on the device memory.

A. Performance analysis

We first manually implemented PACC codes by adding
PACC directives appropriately to the sequential codes. The
PACC codes were then given to the proposed translator to
automatically generate out-of-core OpenACC codes. Using the
generated codes, we measured their effective performance to
investigate the impact of execution parameters such as the
blocking factor k and the block size b.

1) Jacobi method: We solved a problem size of X × Y =
48, 000 × 48, 000 elements, which consumed 18.4 GB of
memory space, with the total time steps of T = 2048.
Figure 10(a) shows the effective performance E given by
E = 4(X − 2)(Y − 2)T/t, where t is the execution time,
which includes the data transfer time between the CPU and
GPU.

In Fig. 10(a), the maximum performance of the Jacobi
method was 28.5 GFLOPS, obtained when the block size and
the blocking factor were b = 8000 and k = 32, respectively.
This figure also shows that the performance was determined
by the blocking factor k rather than the block size b.

We then measured the effective performance with varying
the blocking factor k at fixed block size b = 8000 (Fig. 11(a)).
The effective performance did not monotonically increase with
the blocking factor k due to the tradeoff relation mentioned
in Section III. To investigate this behavior, we analyzed the
breakdown of execution time, which we show in Fig. 12(a).
We found that the copy overhead determined the entire perfor-
mance when k < 32. This overhead was inversely proportional
to k, so that the effective performance increased with k
when k < 32. In contrast, the effective performance slightly
decreased as we increased k from 32. This performance
degradation was caused by temporal blocking, which increased
kernel execution time due to redundant computation. Thus, the
best tradeoff point was obtained when k = 32, where the data
transfer and copy overheads were fully overlapped with kernel
execution time.

2) Himeno benchmark: We solved the problem size XL
(512 × 512 × 1024, 15 GB) with T = 256 time steps. Given
3-D data of X × Y × Z elements, the effective performance
E is given by E = 34(X − 2)(Y − 2)(Z − 2)T/t.

In Fig. 10(b), the effective performance of the Himeno
benchmark monotonically increased with the blocking factor
k. As a result, the maximum performance of 37.5 GFLOPS
was obtained when b = 102 and k = 16, where the buffer
size was maximized; when k > 16, we failed to execute
the PACC code due to device memory exhaustion. A larger
memory capacity was required to find the best blocking factor
that might be obtained when k > 16.

Thus, the tradeoff point was not clearly observed for the
Himeno benchmark because we failed to increase the blocking
factor k from 16. In other words, device memory exhaus-
tion occurred though the data were decomposed for saving
memory consumption. This issue can be resolved by realizing
multidimensional decomposition. With our 1-D decomposition
scheme, a chunk consists of (b+2rk)×Y ×Z elements. There-
fore, the amount of memory consumption linearly increased
with Y and Z, which restricted the blocking factor k such that
k ≤ 16. Therefore, a multidimensional decomposition scheme
is necessary for our experimental machine to successfully run
the benchmark with k > 16.

As for multidimensional decomposition, data pack and
unpack procedures are required to retrieve a small multidimen-
sional array from a large multidimensional array. Therefore,
the PACC translator must be extended such that it can (1)
pack several data segments into a host buffer and (2) unpack
a device buffer onto the original array. Furthermore, memory
references in the kernel must be updated to access the packed
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Fig. 10. Effective performance with different block size b and blocking factor k. Results for (a) Jacobi method, (b) Himeno benchmark, and (c) CIP method.
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Fig. 11. Effective performance with different blocking factor k for fixed block size b. Results for (a) Jacobi method, (b) Himeno benchmark, and (c) CIP
method.

small array accordingly.
Figure 12(b) shows the breakdown of execution time. We

found that the data copy time spent on the host was almost
the same as the kernel execution time when k = 16. Conse-
quently, the blocking factor of k = 16 seems to be the best
configuration for the Himeno benchmark.

3) CIP method: We solved a problem size of 22, 000 ×
22, 000 elements with T = 256 time steps. Given 2-D data
of X × Y elements, the effective performance E is given by
E = 91(X − 2)(Y − 2)T/t.

In Fig. 10, the effective performance reached 73.4 GFLOPS
when b = 2750 and k = 16. As compared with the
Jacobi method and the Himeno benchmark, the CIP method
maximized its performance with relatively a small blocking
factor, k = 8, due to its high arithmetic intensity [23] (see
Table I). That is, the ratio of the kernel execution time over the
CPU-GPU data transfer time was relatively high, and thereby,
the impact of temporal blocking was rapidly maximized with
low k. Therefore, temporal blocking failed to demonstrate a
significant improvement when k ≥ 8.

Figures 11(c) and 12(c) show the effective performance with
different blocking factor k and the breakdown of execution
time, respectively. As we estimated above, the best tradeoff

point was found at k = 8 in Fig. 11(c), where the copy
overhead was close to the kernel execution time, as shown
in Fig. 12(c).

B. Comparison with in-core implementation

Finally, we compared our out-of-core implementation with
an in-core implementation that processed small data (Table II).
The in-core versions of the Jacobi, Himeno, and CIP methods
solved problem sizes of 24, 000×24, 000 (4.6 GB), 128×128×
256 (0.2 GB), 16, 000× 16, 000 (8.2 GB), respectively. Each
in-core data was iteratively updated with the same number of
time steps as the out-of-core implementation. Note here that
the effective performance was derived from the execution time
that included the data transfer time between the CPU and GPU.

The highest in-core performance reached 83.9 GFLOPS,
which was 13% higher than the performance achieved by our
out-of-core implementation. Because data transfer time usually
limits the performance of GPU applications, we think this 13%
slowdown is acceptable for realizing highly-efficient, out-of-
core stencil computation with a directive-based approach.
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Fig. 12. Breakdown of execution time with different blocking factor k for fixed block size b. Results for (a) Jacobi method, (b) Himeno benchmark, and (c)
CIP method.

TABLE II
COMPARISON OF EFFECTIVE PERFORMANCE OF IN-CORE AND

OUT-OF-CORE IMPLEMENTATIONS.

Code In-core Out-of-core Ratio
p1 (GFLOPS) p2 (GFLOPS) p2/p1 (%)

Jacobi 32.2 28.5 89
Himeno 47.5 37.5 79
CIP 83.9 73.4 87

VI. CONCLUSION

We presented an extension of OpenACC directives, named
PACC, and its source-to-source translator capable of acceler-
ating out-of-core stencil computation with temporal blocking
on a GPU. Given a PACC code, our translator generates an
OpenACC code such that the code decomposes large data
into smaller chunks, which are then processed in a pipelined
manner to hide the copy overhead incurred on the CPU.
Furthermore, the generated code is accelerated with temporal
blocking, which reduces the amount of data transfer between
the CPU and GPU.

In experiments, we added PACC directives to three stencil
computation codes, the Jacobi, Himeno, and CIP methods. We
found that the out-of-core performance reached 73.4 GFLOPS
on a Tesla K40 GPU, which was only 13% lower than the in-
core performance. Thus, PACC directives not only facilitate
out-of-core stencil computation on a GPU but also achieve
high performance on a GPU.

Future work includes an automated framework for finding
the best execution parameters b and k, namely the block size
and the blocking factor.
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