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Abstract—This paper presents a source-to-source OpenACC
optimizer that automatically optimizes a histogram compu-
tation code for a graphics processing unit (GPU). Parallel
histogram computation codes typically deploy multiple copies
of histograms and update them with atomic operations. This
duplication method can be implemented as an OpenACC code.
However, the structure of sequential code blocks must be manu-
ally rewritten owing to the limitation on OpenACC directives.
Such a rewritten code does not always achieve the highest
performance on arbitrary platforms, and thus, the duplication
method degrades the performance portability of the code.
To tackle this issue, we propose an optimizer that identifies
histogram-related blocks in a naive OpenACC code and auto-
matically rewrites the detected blocks such that multiple copies
of histograms can be exploited for acceleration. In experiments,
we apply our optimizer to three practical applications and
investigate their performance on three platforms: an NVIDIA
GPU, an AMD GPU and an Intel CPU. Experimental results
show that our automated approach is useful for OpenACC
codes to maximize the performance of histogram computation,
and thereby enhancing the performance portability of the code.

Keywords-Histogram computation; automated tuning; Ope-
nACC; GPU;

I. INTRODUCTION

Histogram computation is one of the important compu-

tational patterns that frequently appear in applications of

various fields such as medical image processing [1], code

assessment [2] and image recognition [3]. A histogram is

an estimate of the probability distribution of a variable, and

consists of a sequence of bins, which store the frequency of

observations over categories (i.e., intervals of a variable). In

most cases, bins are updated randomly due to the irregularity

of observed values. Consequently, the irregularity in memory

access patterns is the key issue that must be resolved for

efficient parallelization of histogram computation. To deal

with this challenging issue, parallel histogram computation

is typically implemented with atomic operations to allow

multiple threads to update the same bin correctly with seri-

alization. Because the memory performance determines the

throughput of bin updates, histogram computation is usually

implemented on accelerators, which provide a magnitude of

order higher memory bandwidth than conventional CPUs.

Accelerators such as the graphics processing unit (GPU)

[4] and Xeon Phi [5] are emerging as green-aware many-

core hardware in high-performance computing systems.

Various memory- or compute-intensive applications [6]–[9]

have been accelerated using accelerators successfully. These

accelerators usually require application code rewriting to

implement performance bottleneck part of the target appli-

cation with a unique programming framework. As such a

framework, the compute unified device architecture (CUDA)

[10] is widely used for NVIDIA GPUs.

One issue on this unique programming style is the lack

of performance portability. The performance portability of

a code is defined as a code characteristic that represents

how fast the code can run on different machines with less

manual modification. Because the CUDA requires rewriting

of the CPU code, the performance portability of the CUDA

code is not so high. To reduce programming efforts, the

GPU community standardized OpenACC [11], which allows

application codes to be executed on different accelerators

with minimum code modification. With OpenACC, pro-

grammers can easily implement an accelerated code by

adding compiler directives in their sequential code. The

OpenACC compiler then automatically generates a parallel

code with data decomposition and parallel schemes specified

by the inserted directives. Because an accelerator-specific

code is automatically generated according to the directives,

the original code can be tuned without modifying key

statements that represent the essence of the computation. We

think that this advantage, i.e., separation of platform-specific

description from the general code, is useful to maximize the

performance portability of the code.

However, as compared with CUDA, high-level OpenACC

has several limitations on the programmability at lower

levels, so that usually results in a low performance. There-

fore, in most cases, manual rewriting of the sequential code

is needed to tune the OpenACC code on the deployed

accelerator. Such rewriting efforts degrade the performance

portability of the code. For example, an acceleration method

for histogram computation, called the duplication method,

cannot be naively implemented by adding OpenACC di-

rectives to the sequential code; statements in code blocks

must be rewritten to manage multiple histograms. These

rewritten statements are redundant if the code is compiled

as a sequential code, and thus, degrading the execution

efficiency on a sequential machine. In addition, the rewritten



code does not always produce the highest performance on

arbitrary accelerators.

In this paper, we present a source-to-source OpenACC

optimizer capable of automatically tuning the performance

of a histogram computation code for the GPU architecture.

Given a naive OpenACC code, our optimizer detects code

blocks where histograms are computed. The detected blocks

are then tuned with entirely rewritten code blocks and appro-

priate directives such that the number of atomic conflicts are

reduced with multiple local histograms on the GPU. Because

the presented optimizer is fully automated, programmers

are freed from managing several versions of the application

code, each optimized for a specific platform. Our automated

approach allows programmers to concentrate on developing

the original, single OpenACC code.

The remainder of this paper is structured as follows.

Section II introduces previous studies on GPU-accelerated

histogram computation and directive-based programming

frameworks. Section III describes the duplication method,

which is the basis of our optimizer. Section IV summarizes

technical issues on directive-based histogram computation.

After that, Section V describes the design and implementa-

tion of our optimizer. Section VI shows experimental results

obtained with several practical applications. Finally, Section

VII concludes this paper with future directions.

II. RELATED WORK

There are many studies that accelerated histogram com-

putation on a CUDA-compatible GPU. Podlozhnyuk [12]

accelerated 256-bin histogram computation for image pro-

cessing applications. This CUDA-based implementation ex-

ploited on-chip shared memory [10] to realize efficient his-

togram computation. Similar approaches [13]–[15] exploited

the shared memory to accelerate histogram computation.

OpenACC provides the cache directive which allows pro-

grammers to specify the variables to be put into the shared

memory. However, such low-level implementations cannot

be fully realized with OpenACC, which hides detailed mem-

ory hierarchy from programmers [16]. Similarly, intrinsics

such as the vote function [17] cannot be called from the

OpenACC code. In contrast, the OpenACC code can run on

a CPU if the code is compiled without OpenACC directives.

The CUDA code does not possess such flexibility.

Some researchers extended the OpenACC specification

[11] to improve the performance portability of the code. An

extension of OpenACC presented in [18] allows a sequential

code to process large data on the GPU. Because the capac-

ity of the video memory is a magnitude lower than that

of the main memory, OpenACC programmers are usually

enforced to rewrite their code to swap out large data from

the video memory. This extension hides such additional,

accelerator-specific description to minimize programming

efforts. Hoshino et al. [19] proposed an OpenACC exten-

sion for data layout transformation. This extension frees

1 /* Histogram initialization */
2 for (int i = 0; i < bins; i++) {
3 hist[i] = 0
4 }
5
6 /* Histogram computation */
7 for (int i = 0; i < n; i++) {
8 hist[data[i]]++; /* 0 <= data[i] < bins */
9 }

Figure 1. Sequential code of histogram computation.

programmers from changing their data structures needed for

performance tuning on accelerators. Similar directives were

presented by Beyer et al. [20]. These extensions improve the

programmability of OpenACC, but the target code must be

rewritten to adapt itself to the extensions. In contrast, our

optimizer automates rewriting of the OpenACC code, so that

its performance can be tuned without modifying the original

code.

Similar to OpenACC, OpenMPC [21] and XcalableACC

[22] directives were proposed for GPU-accelerated com-

putation. OpenMPC is an extension of OpenMP, which

is designed for multithreading on a multi-core CPU.

XcalableACC is an extension of XcalableMP [23], or

a partitioned global address space (PGAS) language for

distributed-memory multiprocessors such as cluster systems.

Although our optimizer currently accepts only OpenACC

codes, its key idea can be applied to other directive-based

parallel frameworks.

III. HISTOGRAM COMPUTATION ON GPU

Figure 1 shows an example of a sequential code that

implements histogram computation on a CPU. In this ex-

ample, array data of size n stores the population to be

examined, and array elements are sampled to enumerate

observed values. Array hist of size bins represents a

histogram, and its elements correspond to histogram bins.

In Fig. 1, the histogram is initialized and computed at lines

2–4 and 7–9, respectively.

Typically, histogram computation can be parallelized by

exploiting the data parallelism inherent in the computation.

That is, the population to be examined is decomposed into

small segments, which are then assigned to threads. Each

thread then examines the assigned segment to update a

histogram. Figure 2 shows a naive method that shares a

single histogram among all threads. In this figure, array

hist is updated by massively-parallel threads that are

responsible for a segment of array data. Atomic opera-

tions are required to update the shared histogram correctly,

because multiple threads can increment the same bin of

the histogram. Such simultaneous votes to the same bin

result in an atomic conflict, which can significantly drop

the memory throughput due to serialization. Therefore, some

conflict-reducing mechanisms are needed to achieve efficient

acceleration for histogram computation.



hist[0] hist[1] hist[bins-1]...

data[0] data[1] data[2] data[3] data[n-2]...data[4] data[n-1]

Figure 2. Parallel histogram computation with the naive method. A single
histogram is shared among threads, each responsible for a segment of the
input array data. Simultaneous votes to the same bin result in serialization
of atomic writes.

hist[0] hist[1] hist[bins-1]...

data[0] data[1] data[2] data[3] data[n-2]...data[4] data[n-1]

locals[0][0] locals[0][1] locals[0][bins-1]... locals[1][0] locals[1][1] locals[1][bins-1]...

Figure 3. Parallel histogram computation with the duplication method.
Two local histograms are shared among threads in this example. Threads
associated with different local histograms never cause atomic conflicts
between them.

To reduce the number of atomic conflicts, the duplication

method shown in Fig. 3 allocates local histograms, or

multiple copies of the original histogram. In this figure,

two local histograms are allocated as a two-dimensional

array locals. Similar to the naive method, these local

histograms are accessed by multiple threads simultaneously,

but threads associated with different local histograms do not

cause any conflict between them; by contrast, threads with

the same local histogram causes atomic conflicts. After this

local histogram computation, the final histogram is generated

by applying parallel reduction to local histograms.

There is a trade-off relation between the number of atomic

conflicts and the locality of memory access. That is, the du-

plication method can reduce the number of atomic conflicts

by increasing the number of local histograms. However,

excessive local histograms result in a low performance due

to random memory accesses from threads that update bins

located in a wide range of memory regions. Furthermore, the

overhead of parallel reduction increases with the number of

local histograms. Therefore, the duplication method must be

executed with an appropriate number of local histograms to

maximize the performance. To the best of our knowledge,

there is no scheme that estimates the appropriate number of

local histograms that maximizes the performance. Therefore,

we have to experimentally determine the number of local

histograms.

IV. HISTOGRAM COMPUTATION WITH OPENACC

Both the naive method and the duplication method can be

implemented with OpenACC. In this section, we summarize

these implementations with technical issues.

1 #pragma acc data copyin(data[0:n]) copyout(hist[0:bins])
2 {
3 /* Histogram initialization */
4 #pragma acc parallel loop
5 for (int i = 0; i < bins; i++) {
6 hist[i] = 0
7 }
8
9 /* Histogram computation */

10 #pragma acc parallel loop
11 for (int i = 0; i < n; i++) {
12 #pragma acc atomic update
13 hist[data[i]]++; /* 0 <= data[i] < bins */
14 }
15 }

Figure 4. OpenACC code for the naive method.

Figure 4 shows an example of an OpenACC code that

implements the naive method. As compared with the se-

quential code (see Fig. 1), this OpenACC code has only

four additional directives as follows.

• #pragma acc data at line 1, which specifies data

transfer between the host and device, i.e., the CPU and

GPU, respectively. This data directive indicates that

the input data data and the output data hist must

be transferred before and after histogram computation,

respectively.

• Two #pragma acc parallel loop at lines 4

and 10, which specify the parallelization scheme for

the loops to be executed on the device. The histogram

is initialized and computed at lines 4–7 and 10–14,

respectively.

• #pragma acc atomic update at line 12, which

indicates that the next sentence causes memory refer-

ences that must be processed atomically.

In other words, the blocks in this code is kept as is in the

sequential code. The only differences over the sequential

code are the abovementioned directives, which can be easily

ignored when compiling the code as a sequential code.

Consequently, this code has high performance portability.

In contrast to the naive method, more efforts are re-

quired to implement the duplication method with OpenACC.

Figure 5 presents an example of an OpenACC code that

implements the duplication method. In this example, eight

local histograms are allocated, and each is assigned to a

group of gangs. A gang [11] is a group of threads that can

exploit coarse-grained parallelism on the device; a gang in

OpenACC corresponds to a thread block [10] in CUDA.

Similarly, a vector is a group of threads that can run in a

single-instruction, multiple-data (SIMD) manner; the vector

size corresponds to the number of threads in a thread

block. This code has many differences over the sequential

code in Fig. 1. In particular, this OpenACC code has not

only additional directives but also modified code blocks to

manage multiple local histograms. Owing to the modified

blocks, which require more memory references than the

original blocks, the modified code cannot run efficiently as



1 const int vector_size = 256;
2 const int gangs = (int)ceil((double)n/vector_size);
3
4 const int num_locals = 8;
5 int *locals = (int*)malloc(sizeof(int)*bins*num_locals);
6
7 #pragma acc data copyin(data[0:n]) copyout(hist[0:bins])

create(locals[0:bins*num_locals])
8 {
9 /* Histogram initialization */

10 #pragma acc parallel loop
11 for (int i = 0; i < bins; i++) {
12 hist[i] = 0
13 }
14
15 /* Local histogram initialization */
16 #pragma acc parallel loop tile(256,1)
17 for (int j = 0; j < num_locals; j++) {
18 for (int i = 0; i < bins; i++) {
19 locals[bins*j + i] = 0;
20 }
21 }
22
23 /* Local histogram computation */
24 #pragma acc parallel loop num_gangs(gangs) vector_length

(vector_size)
25 for (int i = 0; i < n; i++) {
26 int num_iters = (int)ceil((double)n/gangs);
27 int gang_id = i/num_iters;
28 int charge = gang_id%num_locals;
29 #pragma acc atomic update
30 locals[bins*charge + data[i]]++; /* 0 <= data[i] <

bins */
31 }
32
33 /* Local histogram reduction */
34 #pragma acc parallel loop tile(256,1)
35 for (int j = 0; j < num_locals; j++) {
36 for (int i = 0; i < bins; i++) {
37 #pragma acc atomic update
38 hist[i] += locals[bins*j + i];
39 }
40 }
41 }
42
43 free(locals);

Figure 5. OpenACC code for the duplication method. A gang of size
vector_size corresponds to a thread block of vector threads.

a sequential program. Therefore, the modified code has low

performance portability though it maximizes the effective

performance on the GPU.

In Fig. 5, array locals of size num_locals×bins
holds local histograms, where num_locals and bins
specify the number of local histograms and that of bins in

each histogram, respectively. The malloc function at line

5 allocates a main memory region for num_locals local

histograms. Similarly, a memory region must be allocated

on the device memory with the create clause at line 7.

After that, local histograms are initialized at lines 16–21, and

then computed at lines 24–31 in parallel with an atomic
clause. Finally, local histograms are reduced into the final

global histogram at lines 34–40. This parallel reduction is

implemented with an atomic clause. The tile clause at

line 16 expresses a data locality in the nested loop.

Notice that gang indexes are required to associate local

histograms with specific gangs. Such an association can be

easily established with CUDA. However, this association

cannot be explicitly specified with OpenACC, which does

not provide an API function that returns a gang index;

OpenACC hides not only the hierarchy of the memory

architecture but also that of the processor architecture. Our

solution for this issue is to estimate gang indexes from the

value of the loop variable. That is, we assume that gang

indexes can be estimated from loop information, because the

parallel construct is designed for data parallelism, which

mainly exists in loops. We confirmed that this assumption

works fine with the PGI compiler [24], which parallelizes

the loop body with a block assignment scheme; given a

loop structure with n iterations, the number g of gangs

is given by �n/v�, where v = 256 represents the vector

size; each of g gangs is then responsible for c = �n/g�
contiguous iterations. In Fig. 5, the value of c is stored in

variable num_iters and a gang index is stored in variable

gang_id. Variable charge holds the histogram index

associated with a gang of index gang_id.

V. OPENACC OPTIMIZER

Given an OpenACC C code as an input, our source-to-

source optimizer outputs a tuned OpenACC C code. To

realize this, it firstly detects code blocks where histograms

are computed. The detected blocks are then rewritten such

that multiple local histograms are initialized, computed and

reduced in parallel, as presented in Fig. 5.

Figure 6 shows a typical compilation flow using our

optimizer, which must be applied before compiling the Ope-

nACC code. Our optimizer is separated from the deployed

OpenACC compiler. This separated design contributes to es-

tablish high flexibility, allowing our optimization framework

to be used with any compiler.

A. Code Block Detection

A code block where histograms are computed can be

detected as a for loop that satisfies the following two

conditions.

C1) The device executes the for loop. This condition

becomes true if the for loop is associated with a

#pragma acc loop directive. Instead of this, other

variations such as #pragma acc kernels loop
and #pragma acc parallel loop are accept-

able.

C2) An array element is incremented with atomic operations

in the body of the for loop. This condition becomes

true if a #pragma acc atomic update directive

is specified to the sentence that increments the array.

The update clause can be omitted.

After this detection, we assume that histograms are stored

in the arrays found according to condition C2).

As mentioned above, our detection strategy assumes that

the target code blocks are parallelized with OpenACC.
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Figure 6. A typical flow with the proposed OpenACC optimizer.

Therefore, this strategy fails to detect code blocks where his-

tograms are computed sequentially. Furthermore, histogram

computation is usually a stage of a bigger algorithm, as

presented later in Section VI. Thus, in real life applications it

would be important to fuse several loops in the same kernel

whenever possible. Such fused loops may require a different

detection strategy for optimization.

B. Code Generation

In order to generate a tuned OpenACC code, our optimizer

applies the following code rewrite rules to the detected for
loops.

a) The rule on memory management for local histograms.

To allocate and free a main memory region for local

histograms, malloc and free functions are placed

before and after the detected for loop, respectively.

Furthermore, a create clause is added to the exist-

ing #pragma acc data directive to allocate a de-

vice memory region for local histograms. This create
clause must have an argument to specify the arrays that

store local histograms. If a create clause already exists

in the original code, the abovementioned argument is

simply added to the existing create clause.

b) The rule on local histogram initialization and reduction.

Initialization and reduction operations are added before

and after the detected for loop, respectively. These

operations can be implemented with a double-loop in

which the outer loop traverses local histograms while

the inner loop traverses bins of a local histogram. Both

operations are executed on the device by adding a

#pragma acc parallel loop tile directive to

the double loop. The parallel reduction is implemented

with atomic operations.

c) The rule on local histogram computation. As mentioned

in Section IV, the duplication method assigns each

local histogram to a group of gangs. This assignment

requires the number of gangs that participate in histogram

computation. If the original code does not specify this

number, our optimizer specifies the number explicitly

by adding either a gang clause or a num_gangs
clause; the former and the latter are used for loops

Table I
SPECIFICATION OF COMPUTED HISTOGRAMS AND JOINT HISTOGRAMS.

EACH BIN STORES 32-BIT DATA.

Application Histogram size Number of bin updates
(bin) (KB)

Color histogram 768 3 1920× 1080× 3
Mutual information 256 1 256× 256× 89

256 1 256× 256× 89
256× 256 256 256× 256× 89

Line detection 6003× 182 4268 (Number of edge pixels) ×180

with a kernel construct and those with a parallel
construct, respectively. The number of gangs depends on

the vector size, which is experimentally determined as

256. Furthermore, a statement is added within the body of

the detected for loop to compute the index of the local

histogram assigned to each gang. Finally, references to

the original histogram are replaced with those to a local

histogram.

The number of local histograms must be experimentally

determined to maximize the performance of irregular mem-

ory access. This number is restricted by the capacity of the

device memory, because the amount of video memory usage

increases with the number of local histograms. Therefore,

our optimizer produces a flexible code such that the code

can vary the number of local histograms.

C. Implementation

Our optimizer is implemented using the ROSE compiler

infrastructure [25], which provides C and C++ frontend to

generate an abstract syntax tree (AST) of the given code.

The generated AST is then traversed to detect the vertices

that satisfy conditions C1) and C2). The detected vertices

are marked explicitly for modification, so that our rewrite

rules are applied to them in the next traversal. Finally, the

modified AST is given to the ROSE code generator to obtain

a tuned OpenACC code.

VI. EXPERIMENTS

We applied our optimizer to three practical applications

and measured the performance of the generated OpenACC

code. Table I summarizes the specification of computed

histograms and joint histograms.

1) Color histogram computation. A color histogram,

namely the distribution of colors in an image, is gen-

erated. Because a pixel consists of red, green and

blue colors, an observation updates three bins in the

histogram.

2) Mutual information computation [1]. Many image reg-

istration algorithms adopt mutual information as a sim-

ilarity measure of images to be aligned. This compu-

tation generates two histograms and a joint histogram,

each with a different number of bins. An observation

updates a single bin of all (joint) histograms.



Table II
SPECIFICATION OF OUR EXPERIMENTAL MACHINE.

Item Machine #1 Machine #2
OS Ubuntu 14.04.2 LTS
CPU Intel Xeon E5-2680 v2 Intel Xeon E5-2660 v3
Main memory 512 GB 64 GB
GPU NVIDIA Tesla K40 AMD Radeon HD 7970
Video memory 12 GB 3 GB
Compiler PGI C compiler 15.5 [24]
Compiler option -acc -O3 -acc -O3

-ta=tesla,cc35 -ta=radeon,tahiti
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Figure 7. Computed color histograms. Results for (a) animals, (b) austin,
(c) nature and (d) sunset datasets. Bins in the range [0, 255], [256, 511]
and [512, 767] correspond to red, green and blue channels.

3) Line detection using Hough transform [26]. The Hough

transform is useful for image recognition applications.

A single joint histogram is computed during this trans-

form, and an observation updates 180 bins in the

joint histogram. The original code was developed by

modifying an example code in the OpenCV library [27].

Table II shows the specification of our experimental

machines. The error check and correct (ECC) capability of

the Tesla card was turned off during measurement. The PGI

C compiler 15.5 [24] was used to compile the experimental

applications. CPU-based implementations ran on a single

core of the Xeon E5-2660 CPU.

A. Color Histogram Computation

Color histograms are computed for four 24-bit color

images obtained from a media repository called Wikimedia

Commons (https://commons.wikimedia.org). These images

consist of 1920 × 1080 pixels, each having 24-bit RGB

channels. Because each color has 8-bit depth, a histogram

consists of 768 (= 256× 3) bins, as shown in Fig. 7.

0.0

0.5

1.0

1.5

0

5

10

15

20

25

30

0 2 4 6 8 1012 0 2 4 6 8 1012 0 2 4 6 8 1012 0 2 4 6 8 1012

animals austin nature sunset

S
p

ee
d

u
p

E
x

ec
u

ti
o

n
 t

im
e 

(m
s)

Number l of local histograms

Histogram computation Local histogram computation
Local histogram initialization Reduction

(a)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0 2 4 6 8 1012 0 2 4 6 8 1012 0 2 4 6 8 1012 0 2 4 6 8 1012

animals austin nature sunset

S
p

ee
d

u
p

E
x

ec
u

ti
o

n
 t

im
e 

(m
s)

Number l of local histograms

Histogram computation Local histogram computation
Local histogram initialization Reduction

(b)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0 2 4 6 8 1012 0 2 4 6 8 1012 0 2 4 6 8 1012 0 2 4 6 8 1012

animals austin nature sunset
S

p
ee

d
u

p

E
x

ec
u

ti
o

n
 t

im
e 

(m
s)

Number l of local histograms

Histogram computation Local histogram computation
Local histogram initialization Reduction

(c)

Figure 8. Execution times for color histogram computation. Results on (a)
Xeon E5-2660, (b) Tesla and (c) Radeon. The naive method corresponds
to l = 0.

Using these datasets, we measured the execution times for

color histogram computation. The execution times in Fig. 8

do not include the data transfer time between the CPU and

GPU, because color histogram computation typically is a

pipeline stage of an image processing application; the input

images exist on the device memory and the output images

are rendered on the display without transferring back to the



host memory.

In Fig. 8, the best speedups over the naive method were

×2.5, ×2.6, ×2.2 and ×3.3 for animals, austin, nature

and sunset dataset, which are obtained on the Tesla card

with l = 12, 10, 6 and 12, respectively. The maximum

memory throughput reached 112 GB/s when using l = 12
for the sunset dataset. This effective throughput was 39% of

the peak memory bandwidth (288 GB/s). For all datasets

except the sunset dataset, the performance was saturated

with more than l = 8 local histograms. These datasets

frequently incremented a few bins, as shown in Fig. 7.

Such bottleneck bins were frequently accessed in a small

image region, and thereby increasing the number l of local

histograms was not so effective when l ≥ 8. By contrast, the

sunset dataset had a relatively uniform distribution compared

to the remaining datasets. Such a uniform distribution was

efficiently processed with the duplication method.

The duplication method also slightly improved the perfor-

mance on the Radeon card, but it failed to outperform the

naive method for the austin and nature datasets. Similarly,

the performance on the Xeon CPU was decreased by 33%,

due to the overhead for managing multiple local histograms.

Thus, the duplication method is not a perfect solution for

arbitrary datasets and platforms. Our optimizer automatically

rewrites the naive code for the duplication method, so that it

allows application programmers to concentrate on managing

the naive code, which excludes platform-specific description.

B. Mutual Information Computation

As clinical datasets to be aligned, we used a set of

computed tomography (CT), T1- and T2-weighted mag-

netic resonance (MR) images obtained from the Vanderbilt

Database [28]. These datasets consist of 256 × 256 × 89
voxels, each having 8-bit intensity value. Therefore, their

histogram and joint histogram have 256 bins and 256 ×
256 bins, respectively.

Figure 9 shows histograms and joint histograms gen-

erated for mutual information computation. Most of the

observations occurs at only several bins. The maximum

frequency was below 4M and 1M for the CT and MR

images, respectively.

Figure 10 shows the execution times of mutual infor-

mation computation for each pair of images. The best

speedups were observed on the Tesla card: ×3.2, ×3.6

and ×2.9 for CT–MR-T1, CT–MR-T2 and MR-T1–MR-T2

pairs, respectively. Because only a few tens of bins collected

votes, local histograms successfully reduced the execution

time. Consequently, the duplication method outperformed

the naive method on the Radeon card.

Although this application generated three (joint) his-

tograms, the overhead of the duplication method was neg-

ligible. For example, parallel reduction for l = 12 local

histograms took 0.07 ms on the Tesla card, which was
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Figure 9. Histograms and joint histograms generated for mutual infor-
mation computation. Histograms for (a) CT, (b) MR-T1 and (c) MR-T2
images. Joint histograms for (d) CT–MR-T1, (e) CT–MR-T2 and (f) MR-
T1–MR-T2 pairs.

4% of the total execution time. Similarly, local histogram

initialization completed within 0.05 ms when l = 12.

In summary, our generated code achieves a high speedup

over the naive method if sampled data intensively updates

a small number of bins. In particular, a significant speedup

can be expected if a small number of bins collect at least

millions of votes.

C. Line Detection using Hough Transform

We used four images obtained from Wikimedia Commons

(https://commons.wikipedia.org). These images consist of

1920× 1080 pixels, each having 4-byte data. The ratios of

edge pixels were 5%, 11%, 16% and 21% for court, keely,

nature and animals datasets, respectively. The generated joint

histograms consist of 6003×182 bins, each with 32-bit data.

As shown in Table I, this application generated a relatively

large joint histogram than the remaining two applications.

Figure 12 shows the execution times for line detection.

Surprisingly, the duplication method failed to outperform

the naive method on all platforms for all images; the

speeups ranged from ×0.67 to ×0.78 on the Tesla card.

This behavior can be explained by the examined populations,
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Figure 10. Execution times for mutual information computation. Results on
(a) Xeon E5-2660, (b) Tesla and (c) Radeon. The naive method corresponds
to l = 0.

which had relatively small standard deviations, as shown

in Fig. 11; almost all bins have at least 100 votes and

at most 1200 votes. Consequently, simultaneous accesses

to the same bin were not so frequent as compared with

the first two applications. Furthermore, the data size of

the joint histogram was 4268 KB, which cannot be cached
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Figure 11. Joint histograms computed for line detection. Results for (a)
court, (b) keely, (c) nature and (d) animals datasets.

entirely. Because increasing the number l of local histograms

degrades the locality of memory access, such large local

histograms caused many cache misses.

Thus, the duplication method was ineffective for this

application. Our automated approach is useful for such

applications, because our optimizer allows prograrmmers to

keep the naive code.

VII. CONCLUSION

We have presented an optimizer capable of tuning an

OpenACC code that implements histogram computation on

a GPU. To realize this, our optimizer detects code blocks

where histograms are computed. The detected code blocks

are then tuned with the duplication method, which distributes

atomic operations over multiple local histograms. Because

our optimizer automates rewriting of statements in the code,

the effective performance on the GPU can be maximized

with high performance portability.

In experiments, we applied our optimizer to three practi-

cal applications. The achieved performance shows that our

optimizer is useful to accelerate GPU-enabled histogram

computation without modifying the OpenACC code. The

achieved speedups over the naive method ranged from ×0.7

to ×3.6, according to the distribution of the population

to be sampled for histogram computation. The duplication

method is useful to reduce the number of atomic conflicts,

particularly for irregular applications that intensively update

a few tens of bins in the histogram.

One future work is to develop a tuning mechanism that

automates estimation of an appropriate number of local

histograms.
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Figure 12. Execution times for line detection. Results on (a) Xeon E5-
2660, (b) Tesla and (c) Radeon. The naive method corresponds to l = 0.
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