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Abstract

Background: The Smith-Waterman algorithm is known to be a more sensitive approach than heuristic algorithms for
local sequence alignment algorithms. Despite its sensitivity, a greater time complexity associated with the
Smith-Waterman algorithm prevents its application to the all-pairs comparisons of base sequences, which aids in the
construction of accurate phylogenetic trees. The aim of this study is to achieve greater acceleration using the
Smith-Waterman algorithm (by realizing interpair block pruning and band optimization) compared with that achieved
using a previous method that performs intrapair block pruning on graphics processing units (GPUs).

Results: We present an interpair optimizationmethod for the Smith-Waterman algorithmwith the aim of accelerating
the all-pairs comparison of base sequences. Given the results of the pairs of sequences, our method realizes efficient
block pruning by computing a lower bound for other pairs that have not yet been processed. This lower bound is
further used for band optimization. We integrated our interpair optimization method into SW#, a previous GPU-based
implementation that employs variants of a banded Smith-Waterman algorithm and a banded Myers-Miller algorithm.
Evaluation using the six genomes of Bacillus anthracis shows that our method pruned 88 % of the matrix cells on a
single GPU and 73 % of the matrix cells on two GPUs. For the genomes of the human chromosome 21, the alignment
performance reached 202 giga-cell updates per second (GCUPS) on two Tesla K40 GPUs.

Conclusions: Efficient interpair pruning and band optimization makes it possible to complete the all-pairs
comparisons of the sequences of the same species 1.2 times faster than the intrapair pruning method. This
acceleration was achieved at the first phase of SW#, where our method significantly improved the initial lower bound.
However, our interpair optimization was not effective for the comparison of the sequences of different species such as
comparing human, chimpanzee, and gorilla. Consequently, our method is useful in accelerating the applications that
require optimal local alignments scores for the same species. The source code is available for download from http://
www-hagi.ist.osaka-u.ac.jp/research/code/.
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Background
Pairwise sequence alignment identifies similar regions
between two biological sequences (such as between
nucleotide and protein sequences) and is useful for ana-
lyzing functional, structural, and evolutional relation-
ships between the two. Such alignment algorithms can
be classified into two groups: global and local alignment
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algorithms. The former produces an end-to-end align-
ment of sequences and the latter produces alignments
that describe most similar regions within sequences.
In particular, local alignment is useful for constructing
a phylogenetic tree because it can identify regions in
which mutations such as the insertions or deletions of
nucleotides occurred in the evolutionary process.
The Smith-Waterman (SW) algorithm [1] is known as a

dynamic programming scheme that yields the exact solu-
tions for pairwise local alignments; its solutions produce
similarity scores, similar regions in the sequences, and
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operations needed to match those similar regions. The
SW algorithm consists of a matrix-filling phase and a
backtracing phase. The matrix-filling phase computes the
similarity scores of the arbitrary regions of sequences, and
the backtracing phase identifies the local alignments that
can be found from the highest-scoring matrix cell. Given
the two sequences of lengths m and n (≥ m), the time
complexity of the SW algorithm is O(mn). Because the
length of biological sequences can reach giga-base pairs
(Gbp), many researchers have accelerated the SW algo-
rithm using various hardware such as graphics process-
ing units (GPUs) [2–5], single-instruction multiple-data
(SIMD) enabled CPUs [6–8], field programmable gate
arrays [9] and Xeon Phi [10]. Of these, GPUs [11] emerge
as accelerators not only for graphics applications but also
for general applications [12–14].
CUDAlign 1.0 [3] employed a GeForce GTX 280 GPU

to parallelize the performance bottleneck part of the SW
algorithm, namely, the matrix-filling phase. This tool first
computed the local alignment score between the human
chromosome 21 and the chimpanzee chromosome 22; it
took 21 h to process the matrix-filling phase for sequences
that were 47 Mbp long for the human chromosome and
33 Mbp long for the chimpanzee chromosome. To obtain
complete alignment results, the tool was further extended
to integrate the score-only Smith-Waterman algorithm
with the Myers-Miller algorithm [15], which computes
optimal global alignments in linear space. In addition, the
tool realized efficient matrix filling with intrapair block
pruning, after which it achieved a further acceleration of
up to 51 % [16]. Meanwhile, SW# [5] implemented a paral-
lel algorithm that can achieve further acceleration on two
GPUs; that dual-GPU implementation aligned the human
chromosome 21 with the chimpanzee chromosome 22
in 6.5 h on a GeForce GTX 690. Within 9 h, another
multi-GPU implementation [17] aligned the human chro-
mosome 1, which was 249Mbp long, with the chimpanzee
chromosome 1 that was 228 Mbp long by using 64 Tesla
M2090 nodes.
To the best of our knowledge, the existing acceler-

ation methods were designed for pairwise alignment.
Consequently, we believe that further acceleration can
be achieved for the all-pairs comparisons, which iter-
ate pairwise alignments with all possible combinations
of sequences to obtain accurate phylogenetic trees [18].
An all-pairs comparison requires

(N
2
)
pairwise alignments,

where N is the number of sequences to be investigated.
Consequently, further acceleration of pairwise alignment
is necessary.
We present an interpair optimization method for the

SW algorithm that is useful for accelerating the all-pairs
comparisons of sequences. According to the alignment
results of several pairs, our method realizes efficient block
pruning by computing a lower bound for another pair

that has not yet been aligned. This lower bound is further
used for band optimization [19], which restricts matrix
filling within a certain anti-diagonal band. Consequently,
our method is effective for investigating sequences that
are highly similar to each other. This method is imple-
mented on a dual-GPU system by extending the previous
SW# implementation [5].

Related work
Feng et al. [18] have presented a progressive method
capable of constructing a phylogenetic tree from multi-
ple sequences. Their method computes a distance matrix
that represents the similarity between the sequences to be
examined; such computation requires an all-pairs com-
parison of the sequences, but the comparison is processed
sequentially without interpair pruning. In contrast, our
method intends to accelerate the all-pairs comparison by
interpair pruning.
Practical tools such as ClustalW [20] and T-Coffee [21]

deploy a progressive method that solves the multiple-
alignment problem using an approximated approach.
These tools perform all-pairs comparisons with global
alignments before processing the progressive method.
ClustalW employs a fast approximate algorithm [22] to
accelerate the all-pairs comparison. T-Coffee increases
the accuracy of the solution by performing the all-pairs
comparison not only with global alignment but also with
local alignment, which is useful when compensating for
multiple alignments but requires a long execution time
[23]. In contrast to these tools, we realize interpair prun-
ing for the all-pairs comparison by local alignment.
Sandes et al. [16] developed CUDAlign 2.1, which com-

putes optimal local alignments in three phases, as Chao
et al. [19] did: (1) the forward matrix-filling phase, which
computes the highest alignment score and the ending
alignment position, (2) the backward matrix-filling phase,
which obtains the starting alignment position from the
computed ending position, and (3) the reconstruction
phase, which obtains the full alignment by applying the
Myers-Miller algorithm [15] to subsequences between the
starting and ending alignment positions. This tool also
realized intrapair block pruning for efficient SW align-
ment. Their pruning method accelerates the matrix-filling
phase by avoiding computation for matrix blocks that
do not to improve a lower bound that has already been
produced. That scheme successfully avoids 53.7 % of all
matrix cell computations, which increases the alignment
throughput from 28.6 GCUPS to 50.7 GCUPS on a
GeForce GTX 560 for the human chromosome 21 and the
chimpanzee chromosome 22. However, the lower bound
is obtained from the ongoing pair to be aligned. Conse-
quently, there is a limitation on the maximum number of
matrix cells that can be pruned, for which the researchers
provide a proof [16].
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The same block pruning method was implemented by
SW# [5], which parallelized the abovementioned three
phases on a dual-GPU environment. Furthermore, SW#
applies band optimization [19, 24] to the second and
third phases, where the highest alignment score is known.
Banded algorithms are useful to avoid computation for
matrix cells being outside a certain anti-diagonal band.
However, banded alignment algorithms assume that an
optimal alignment exists within a pre-specified band. This
assumption requires the highest alignment score to esti-
mate the maximum number of insertions and deletions,
which determines the width of the band. Without sat-
isfying this assumption, optimal alignments cannot be
obtained. With respect to the first phase, where the high-
est alignment score is unknown before computation, an
alternative solution is to start matrix filling with an ini-
tial width and double the width until covering the full
alignment. However, this iterative procedure is a time-
consuming task for long sequences.
Many researchers have accelerated the SW algorithm

using various computing platforms with parallelization
and tuning techniques. Rognes et al. [8] accelerated the
SW algorithm on multi-core CPUs. Their implementa-
tion achieved 106 GCUPS on two Xeon X5650 CPUs
by achieving thread-based parallelization with multime-
dia SIMD instructions called Streaming SIMD Extensions
(SSE) [25]. Liu et al. [10] implemented that SIMD-based
algorithm on four Xeon Phi accelerators [26] and achieved
228 GCUPS at best. They also presented GPU-based
implementations [27, 28] for homology searches that are
useful for identifying, for example, amino acid sequences
in the database that are most similar to any amino acid
sequence given as a search query. Such homology searches
were accelerated by exploiting the data parallelism inher-
ent in the search process; different database sequences can
be examined simultaneously. A similar GPU-based imple-
mentation was presented by Munekawa et al. [29], who
extended the implementation by enabling idle GPU cycles
to be explored, thus accelerating the homology search
[13].

Methods
Let S � {s1, s2, · · · , sN } be a set of N sequences to be
investigated. Let P � {〈a, b〉 | sa, sb ∈ S , 1 ≤ a < b ≤ N}
be a set of ordered pairs. The goal of the all-pairs compar-
ison of sequences is to compute the alignment scores and
similar regions for all pairs in P .

Smith-Waterman algorithm
Let sa and sb be the sequences of lengths m and n (≥ m)

to be aligned. As shown in Fig. 1, the SW algorithm com-
putes the alignment score of pair 〈a, b〉 according to the
edit distance needed to convert sa to sb. A pair of similar
sequences produces a high alignment score.

Fig. 1 An example of local alignment. Two sequences sa and sb are
aligned in this example. Alignment over sequence sa is given by
[ x, y]=[1, 8] while that over sequence sb is given by [z,w]=[3, 10].
Notation “-” represents an empty symbol, which is skipped when
computing x, y, z and w. In this example, the gap cost is o = −2 and
the costs of a match and a mismatch are α = 2 and β = −1,
respectively

Let ai and bj be the i-th symbol of sequence sa and the
j-th symbol of sequence sb, respectively. Let S(i, j) be the
similarity function that represents the similarity between
symbols ai and bj: S(i, j) = α if ai = bj and β otherwise.
That is, α (≥ 0) represents the score when ai matches bj,
while β (< α) represents the unmatching score. As a scor-
ing system, we assume affine gap penalty. The gap penalty
of length l is given by o+e×(l−1), where o is the opening
penalty and e is the extension penalty.
As shown in Fig. 2, the SW algorithm [1] consists of

matrix-filling and backtracing phases. The former phase
is based on dynamic programming that computes the
maximum score of the alignment that ends at arbitrary
positions. On the other hand, the latter phase identifies
the most similar regions, namely, the subsequences that
give the highest score according to the necessary replace-
ment or insertion of symbols. Thematrix-filling phase and
backtracing phases require O(mn) time and O(m + n)

time, respectively. Consequently, the former phase usually
limits the entire performance.
Let Hi,j (0 ≤ i ≤ m, 0 ≤ j ≤ n) be the maximum align-

ment score of subsequences ending with symbols ai and
bj. The score Hi,j is then given by the following equations
[30]:

Hi,j = max
{
0,Ei,j, Fi,j,Hi−1,j−1 + S(i, j)

}
, (1)

Ei,j = max
{
Ei,j−1 − e,Hi,j−1 − o

}
, (2)

Fi,j = max
{
Fi−1,j − e,Hi−1,j − o

}
, (3)
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Fig. 2 Smith-Waterman algorithm. The SW algorithm consists of matrix-filling and backtracing phases. Computation for the blue cells can be pruned
during matrix filling. An orange cell is a triggering cell, which means pruning can spread to neighboring cells. Pruned matrix cells are typically
located in either the lower half or the lower triangular matrix [16]

where Hi,0 = Ei,0 = Fi,0 = 0 for all i, and H0,j = E0,j =
F0,j = 0 for all j. Figure 3 shows a geometrical repre-
sentation of these definitions. Eqs. (1)–(3) indicate that a
matrix cell (i, j) depends on its left, upper, and upper left
neighbors, namely, (i − 1, j), (i, j − 1), and (i − 1, j − 1),

Fig. 3 Geometrical representation of definitions. When computing
matrix cell Hi,j , there arem − i and n − j symbols left in sequences sa
and sb , respectively

respectively. Consequently, matrix cells are filled from the
top left corner to the bottom right corner.
After filling all matrix cells, the backtracing phase is

initiated at the highest-scoring cell and terminates on
reaching a cell with a score of zero. This phase identifies
the positions where a symbol must be replaced or an
empty symbol must be inserted to obtain an alignment.
A naive backtracing implementation cannot be used
for long sequences, because it requires O(mn) space to
perform backtracing. Therefore, the Myers-Miller algo-
rithm [15], or a global alignment algorithm with linear
space, is usually applied to subsequences between the
starting and ending alignment positions. The Myers-
Miller algorithm is based on the Hirschberg algorithm
[31], which employs a recursive divide-and-conquer
scheme to compute global alignments in O(m + n)

space.
In the following discussion, let

[
x, y

]
be the most similar

region in sequence sa, where x and y represent the starting
and ending positions of the alignment, respectively, and
1 ≤ x ≤ y ≤ m. For example, we have x = 1 and y = 8
for the case illustrated in Fig. 1. Note that a similar region
is defined over the original sequence sa so that neither
the empty nor the replacing symbols are included in the
region. Similarly to this definition over sa, which corre-
sponds to the first entry of the ordered pair 〈a, b〉, let [z,w]
be the similar region in sequence sb, where 1 ≤ z ≤ w ≤ n
(see Fig. 1).
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Interpair pruning
Suppose that we have the alignment results for pair p =
〈a, b〉 ∈ P : the similar region is

[
xp, yp

]
, fp is the num-

ber of mismatched symbols, and gp is the number of gaps.
Similarly, the alignment results for pair q = 〈a, c〉 ∈ P ,
where b < c, are given as

[
xq, yq

]
, fq, and gq. Using these

results, our method accelerates the SW alignment for pair
r = 〈b, c〉 ∈ P by realizing efficient pruning during
the matrix-filling phase. In the following discussion, we
consider the common part of similar regions

[
xp, yp

]
and[

xq, yq
]
(see Fig. 4).

Theorem 1. Pairs p = 〈a, b〉 and q = 〈a, c〉, where a <

b < c, do not have a common part in sequence sa if and
only if either yp < xq or yq < xp is satisfied. In other words,
a common part exists if and only if yp ≥ xq and yq ≥ xp
are satisfied. The common part in sequence sa is then given
by

[
max

(
xp, xq

)
, min

(
yp, yq

)]
.

Theorem 1 implies that our method cannot improve a
lower bound for pair r if there is no common part between
the aligned pairs p and q (i.e., if either yp < xq or yq < xp).
Consequently, we assume that yp ≥ xq and yq ≥ xp in the
following discussion.

Lower bound for the all-pairs comparison
The key idea of our interpair pruning method is to use
a lower bound L1 on the alignment score of the com-
mon part

[
max(xp, xq), min(yp, yq)

]
as a lower bound L on

the alignment score for pair r. Notice that the common
part

[
max(xp, xq), min(yp, yq)

]
in sequence sa corresponds

to the subsequences of sb and sc. Consequently, a lower

bound L1 for the common part in sequence sa can be
used as a lower bound L2 on the alignment score for
those subsequences. Because each subsequence is a part of
sequences sb and sc, the alignment score for pair r = 〈b, c〉
is at least L2, which means that L2 can be used as a lower
bound L for pair r = 〈b, c〉.
Figure 5 shows all matching and unmatching patterns

that can be observed when aligning sequences sa, sb, and
sc. As shown in that figure, a lower bound L2 for pair
r can be computed by counting the number of match-
ing symbols that commonly appear in all sequences sa, sb,
and sc. Given the alignment results for pairs p and q, the
number of matching symbols that commonly appear in
all sequences sa, sb, and sc is minimized if all fp + fq mis-
matches and gp + gq gaps of pairs p and q appear in the
common part (see Fig. 6). Assuming this worst case, the
total mismatch cost F and the total gap costG are given by

F = β × (
fp + fq

)
, (4)

G = max
(
o + e × (gp + gq − 1), o × (gp + gq)

)
. (5)

Consequently, a lower bound L1 on the alignment score
for the common part can be given by

L1 = max(0, α × M − F − G), (6)

where M is the number of matching symbols in the com-
mon part. This number M can be computed by subtract-
ing the number of unmatching symbols from the length of
the common part:

M = min
(
yp, yq

) − max
(
xp, xq

) + 1 − (
fp + fq

)
. (7)

Fig. 4 The common part of alignments. (a) Alignment for pair p = 〈a, b〉, (b) alignment for pair q = 〈a, c〉, and (c) their common part in sequence sa .
This example assumes that xp < xq < yp < yq
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Fig. 5Matching and unmatching patterns for three sequences. Three
operations can occur at every position on a sequence: a match, a
replacement, and a gap insertion. Considering these operations, eight
patterns can occur when considering sequences sa , sb , and sc . A
lower bound on the alignment score for pair r = 〈a, c〉 can be
obtained by counting the number of matching symbols that
commonly appear in each of the three sequences

Recall here that the common part does not include
empty symbols because it is defined over the original
sequence sa.

Corollary 1. Eq. (6) is a lower bound on the score of the
common part.

Proof. Assume an alignment score L′
1 of the common

part such that L′
1 < L1. Because L1 assumes that all

replacements and empty symbols exist in the common
part (see Fig. 6), all of the remaining symbols in the com-
mon part are matching symbols. The total score of such

remaining symbols must be a negative number to satisfy
L′
1 < L1, which contradicts the assumption that α ≥ 0.

Thus, the conclusion is that L′
1 ≥ L1.

Theorem 2. L1 is a lower bound on the alignment score
for pair r. That is, L′ ≥ L1, where L′ is the alignment score
for pair r.

Proof. Because local alignment produces the maximum
alignment score starting from an arbitrary position and
ending at an arbitrary position, a lower bound on the score
of the common part is also a local bound on the alignment
score for the entire region.

Our method starts the matrix-filling phase with L = L1
instead of L = 0. The remaining procedure is exactly the
same as that of the existing method [16].
Algorithm 1 describes how our method processes the

all-pairs comparisons of sequences. Given N sequences,
this algorithm outputs

(N
2
)
pairwise alignment results for

all the pairs of sequences. The ComputeLB() function
at line 6 returns a lower bound according to Eq. (6). As
shown in Algorithm 2, this function computes a lower
bound for pair 〈a, b〉 from the alignment results of pairs
〈c, a〉 and 〈c, b〉, where c < a < b. The AlignPair()

function at line 8 of Algorithm 1 returns a pairwise
alignment result for pair 〈a, b〉 using the computed lower
bound.

Fig. 6 The worst case of the alignment score of the common part. (a) Alignment results on sequence sa given by pairs p = 〈a, b〉 and q = 〈a, c〉.
(b) The worst case that can be derived from the results. This example assumes that xp < xq < yp < yq
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Algorithm 1 All-PairsComparison(S ,N)

Require: Set S � {s1, s2, · · · , sN } of sequences to be aligned
Ensure: Set R = {

r〈a,b〉 | 1 ≤ a < b ≤ N
}
of alignment results

1: Initialize set R;
2: for a ← 1 to N − 1 do
3: for b ← a + 1 to N do
4: bound ← 0;
5: for c ← 1 to a − 1 do
6: bound ← max(bound, ComputeLB(r〈c,a〉, r〈c,b〉)); 	 Estimate 〈a, b〉 from 〈c, a〉 and 〈c, b〉
7: end for
8: r〈a,b〉 ← AlignPair(a, b, bound);
9: end for

10: end for

Algorithm 2 ComputeLB
(
rp, rq

)

Require: Alignment results rp and rq for pairs p = 〈c, a〉 and q = 〈c, b〉, respectively
Ensure: A lower bound for pair 〈a, b〉
1: L ← 0;
2: if rp.y ≥ rq.x && rq.w ≥ rp.x then 	 The common part exists
3: F ← β × (

rp.f + rq.f
)
; 	 Eq. (4)

4: G ← max
(
o + e × (

rp.g + rq.g − 1
)
, o × (

rp.g + rq.g
))
; 	 Eq. (5)

5: M ← min
(
rp.y, rq.y

) − max
(
rp.x, rq.x

) + 1 − (
rp.f + rq.f

)
; 	 Eq. (7)

6: L ← max(0,α × M − F − G); 	 Eq. (6)
7: end if
8: return L;

Pairwise alignment with intrapair pruning
Ourmethod extends an existing intrapair pruningmethod
such that it can perform interpair pruning using the lower
bound L = L1. This intrapair pruning method was orig-
inally presented by CUDAlign 2.1 [16], which can omit
computation for any cell (i, j) that satisfies i ≥ 
m/2� or
i ≥ n − j on a single GPU [16] (see Fig. 1). If m ≤ 2n,
the number of pruned cells is at most �mn/2 − m2/8;
otherwise, it is at most �mn − n2/2.
To describe this pruning method, we introduce the

following definition:

Definition 1. A triggering cell is defined as a matrix cell
(i, j) such that it satisfies Hi,j + α ×max(m− i, n− j) < L,
where L is a lower bound on the alignment score. As such
a lower bound, the method uses the highest score that has
already been produced before computing Hi,j.
This definition indicates that none of the possible

scores that can be obtained from a triggering cell is
optimal although all symbols of uncompared subse-
quences ai+1ai+2 . . . am and bj+1bj+2 . . . bn match. As
shown in Fig. 3, the maximum number of such uncom-
pared symbols is max(m − i, n − j). Therefore, the high-
est score that can be obtained from Hi,j is given by
Hi,j + α × max(m − i, n − j), which we mentioned in
Definition 1.

According to Eq. (1), the following corollary can be
obtained:
Corollary 2. Computation for a matrix cell (i, j) can be
pruned during matrix filling if all of (i− 1, j), (i, j− 1), and
(i−1, j−1) are triggering cells or have already been pruned.

Band optimization based on lower bound
The lower bound L can be used for not only interpair
pruning but also band optimization [19]. That is, our band
optimization method substitutes the lower bound L for
the alignment score to estimate the minimum number of
matches, which can be given by the ratio between the
known alignment score and the highest substitution score
[5]; the ratio is Ł/α with our scoring function. Accord-
ingly, the maximum number of insertions and deletions is
given bym−L/α for sequence sa and n−L/α for sequence
sb. This means that the matrix area to be filled out can be
restricted within an anti-diagonal band: any cell (i, j) that
satisfies −(n− L/α) ≤ i− j ≤ m− L/α must be filled out.

GPU-based implementation
We implemented our method by extending SW# [5] such
that it starts the forward matrix-filling phase using L =
L1 and band optimization. SW# runs on at most two
GPUs that are compatible with the compute unified device
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architecture (CUDA) [32]. This dual-GPU implementa-
tion divides thematrixH into two pieces, upper and lower,
so that the pieces can be filled out in parallel. In other
words, the lower piece is processed from the bottom right
corner to the top left corner, while the upper piece is
processed in the opposite direction.
Similar to CUDAlign 2.1 [16], SW# computes optimal

local alignments in three phases. The first phase computes
the highest alignment score and the ending alignment
position. Our interpair optimization method is applied to
the first phase, where neither the highest alignment score,
the starting alignment position nor the ending alignment
position is unknown before computation. The second
phase processes a banded variant [24] of the Smith-
Waterman algorithm with reverse subsequences that start
from the computed ending position. This phase is also
accelerated with a block pruning method that uses the
highest alignment score instead of a lower bound. The
final phase applies a modified version of the Myers-Miller
algorithm [15] to the found subsequences. The modified
version processes the Needleman-Wunsch algorithm [33]
accelerated with Ukkonen’s band optimization [24].
SW# applies the pruning operation to matrix blocks

rather than matrix cells. This block pruning optimiza-
tion avoids thread divergence [32], which can significantly
drop the execution efficiency on the single-instruction,
multiple-thread (SIMT) architecture [32]. In other words,
all cells (i.e., threads) in a block are computed or pruned,
and thus, all threads in a warp have the same execution
path after pruning.
Table 1 shows the specification of our experimental

machine, which was equipped with two Tesla K40 GPUs.
These GPUs are connected to PCIe 3.0 ×16 slots.

Results and discussion
To evaluate our interpair optimization method in terms
of execution time, we compared our method with the
original SW#, which uses an existing intrapair pruning
method [16]. Three variations were deployed for exper-
iments: (1) an interpair pruned and banded version, (2)

Table 1 Experimental machine

Item Specification

CPU Intel Xeon CPU E5-2680 v2 @ 2.80 GHz

Main memory DDR3 512 GB

GPU NVIDIA Tesla K40 ×2

Video memory GDDR5 12 GB ×2

OS Ubuntu 14.04.1

Compiler gcc 4.8.2

Compiler option O3

CUDA CUDA 6.5

an interpair pruned version and (3) a banded version. We
used the same scoring function as that employed by the
other method [5, 16]: (α,β , o, e) = (1,−3, 5, 2).
Table 2 shows the specification of our experimental

sequences [34]. Sequences s1–s6 are genomes of Bacil-
lus anthracis. Sequences s7, s8 and s9 are genomes of
the human chromosome 21. Sequences s10, s11 and s12
are genomes of the human chromosome 19, the gorilla
chromosome 19 and the chimpanzee chromosome 19,
respectively.

Comparison of execution time
Figure 7 shows the execution time T spent for the all-pairs
comparison of six base sequences: S = {s1, s2, s3, s4, s5, s6}.
Execution time T includes the time spent for all three
phases of SW#. Our method with interpair pruning and
band optimization reduced the execution time from 154
to 125 m on a single GPU and from 76 to 54 m on dual
GPUs. These results correspond to the speedups of 1.2
times and 1.4 times, respectively. Thus, our method was
more effective on dual GPUs than on a single GPU.
To investigate the execution time in detail, we measured

the alignment throughput ρ = (m + 1) × (n + 1)/T
for all pairs. Figure 8 shows those measured through-
puts in GCUPS. As can be seen, our method successfully
increased the throughput for all pairs. The alignment
throughputs on a single GPU were 62–66 GCUPS and
those on dual GPUs were 126–202 GCUPS. Our dual
GPU implementation achieved superlinear speedups that
were 2.0–3.1 times faster than a single GPU implemen-
tation. Compared with the previous method’s speedups

Table 2 Experimental datasets

Sequence Accession number Length (bp) Remark

s1 [GenBank:CP002091] 5,218,947 Bacillus anthracis

s2 [GenBank:AE016879] 5,227,293 Bacillus anthracis

s3 [GenBank:CP001598] 5,227,419 Bacillus anthracis

s4 [GenBank:CP001970] 5,227,898 Bacillus anthracis

s5 [GenBank:AE017225] 5,228,663 Bacillus anthracis

s6 [GenBank:CP001215] 5,230,115 Bacillus anthracis

s7 [GenBank:AC_000153] 33,483,523 Human
chromosome 21

s8 [GenBank:NC_000021] 46,709,983 Human
chromosome 21

s9 [GenBank:NC_018932] 47,690,666 Human
chromosome 21

s10 [GenBank:NC_000019] 58,617,616 Human
chromosome 19

s11 [GenBank:FR853090] 56,181,278 Gorilla
chromosome 19

s12 [GenBank:NC_006486] 63,644,993 Chimpanzee
chromosome 19
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Fig. 7 Execution times of the all-pairs comparisons. Results obtained
from the implementations of (a) one GPU and (b) two GPUs

(which ranged from 2.0 to 2.1 times), our interpair opti-
mization method can yield more efficient parallelization
on dual-GPU systems.

Pruning ratio
Figure 9 shows the pruning ratio γ = c/mn, where c rep-
resents the number of pruned matrix cells during forward
matrix-filling (i.e., the first phase). Similar to the align-
ment throughput ρ, ourmethod successfully increased the
pruning ratio γ for all pairs. The maximum ratio on a sin-
gle GPU was obtained for pair 〈3, 4〉, which increased γ by
34 %. Similar results were obtained for other pairs. Thus,
our interpair pruning method (which increased the prun-
ing ratio) realized alignment throughput acceleration.
The pruning ratio for pair 〈3, 4〉 further increased from

34 % to 49 % on the dual-GPU implementation, which
implies that because our method successfully increases
the number of pruned matrix cells when using multi-
ple GPUs, our pruning method is more effective on dual
GPUs than on a single GPU. To analyze this behavior in
depth, we investigated the distribution of pruned matrix
cells. Figure 10 illustrates the area where matrix cells were

Fig. 8 Alignment throughputs. Results obtained from the implementations
of (a) one GPU and (b) two GPUs

pruned for pair 〈3, 4〉; as that figure shows, our interpair
method significantly enlarged the area of pruned matrix
cells on dual GPUs.
As mentioned earlier, the previous intrapair method

[16] can prune a matrix cell (i, j) that satisfies either i ≥

m/2� or i ≥ n − j on a single GPU. However, these con-
ditions cannot be directly applied to dual GPUs because
that parallel method divides the matrix H into two pieces
on dual GPUs. Owing to this division, all matrix cells
on the connecting border of these pieces must be com-
puted to correctly integrate the local results into a global
result; this restriction prohibits pruning a matrix cell that
satisfies i ≥ 
m/2�. Consequently, matrix cells that the
previous method can prune satisfy either i ≥ n − j (in the
upper piece) or m − i ≥ j (in the lower piece). Note that
the latter condition can be easily derived by considering
a piece turned upside down and right side left. In con-
trast, our method does not have this restriction because it
uses a better lower bound that cannot be obtained by the
intrapair pruning approach. Consequently, our interpair
pruning approach is effective for achieving parallelization
and efficient pruning with less computation.
We then analyzed how pruning was triggered during

forward matrix-filling. There are four triggering patterns,
each shaping a different border of the pruned area: (1)
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Fig. 9 Pruning ratio. Results obtained from the implementations of
(a) one GPU and (b) two GPUs

horizontal, (2) vertical, (3) diagonal, and (4) anti-diagonal.
Horizontal and vertical borders appear when the highest
score does not increase during the earlier phase of forward
matrix-filling. Figure 11 shows an example of horizontal
and vertical borders; in that example, the similar region of
pair 〈2, 6〉 existed in the latter part of the sequences. Con-
sequently, the lower bound was rarely updated during the
earlier phase of forward matrix-filling; thus, the triggering
cells satisfy i = m − d1 or j = n − d2, where d1 and d2
are constant values. Diagonal borders appear around the
highest scoring cell because its right and bottom neigh-
bors can be pruned; such borders can be observed in our
method and the previous method. Finally, anti-diagonal
borders appear when the lower bound increases during
forward matrix-filling. Anti-diagonal borders appear in
the area that satisfies i ≥ n− j and i ≤ 
m/2�, as shown in
Fig. 10(b). Our method failed to update the lower bound
within this region; consequently, anti-diagonal borders
were observed only in the previous method.
Next, we investigated the alignment results of the best

and worst cases in terms of speedup. As shown in Table 3,
the best and worst speedups on a single GPU were
obtained for pairs 〈3, 6〉 and 〈2, 5〉, respectively. The lower
bound of the best case was L = 1, 433, 837, which was
the fourth smallest value among possible pairs; with that

lower bound, our method increased the pruning ratio
from 21 % to 48 % (a 2.3 times higher ratio), which was
the best pruning ratio improvement obtained. In contrast,
the lower bound of the worst case was L = 5, 061, 056,
which was the fourth largest value among possible pairs;
with that lower bound, the pruning ratio increased from
53 % to 86 % (1.6 times), which was the third smallest
ratio improvement. Thus, our method’s impact depends
on the pruning ratio of the intrapair pruning method. Our
method is effective if the original pruning ratio (obtained
with intrapair pruning) is relatively small; however, its
effectiveness is limited if the original pruning ratio is high.
We also conducted experiments using the three

genomes of the human chromosome 21: sequences s7, s8
and s9. For pair 〈7, 8〉, the similar region on sequence s7
was [570, 587, 33, 483, 523]. However, the similar region
was [799, 132, 33, 483, 523] for pair 〈7, 9〉. According to
these alignment results, we obtained a lower bound L =
26, 801, 979 on the score for pair 〈8, 9〉. This lower bound
successfully increased the pruning ratio for pair 〈8, 9〉
from 40 % to 73 % on a single GPU and from 16 % to 53 %
on a dual GPU. Accordingly, we achieved the speedups
of 1.2 and 1.3 times on a single GPU and dual GPUs,
respectively.

Case study with different species
We next performed experiments to evaluate the effective-
ness of our method for different species. Genomes of the
human chromosome 19, chimpanzee chromosome 19 and
gorilla chromosome 19 were aligned: sequences s10, s11,
and s12 in Table 2.
Table 3 summarizes the alignment results. For pair

〈10, 11〉, the similar region on the human sequence 10
was [27, 961, 827, 58, 340, 489]. For pair 〈10, 12〉, that sim-
ilar region was [27, 437, 780, 58, 535, 035]. Thus, there
was a common part between the two pairs. How-
ever, the lower bound computed from these results was
L = −35, 205, 808 < 0. Because this lower bound is
smaller than zero (which was the initial value used in
the previous method), our interpair optimization method
failed to increase the number of pruned matrix cells. As
shown in Table 3, many gaps were needed to align the
sequences of these different species; thus, these dissimilar
sequences resulted in L < 0. Because the opening penalty
o is set to five, L becomes a negative value if gaps occupy
more than 20 % of the common part.
The abovementioned negative value indicates that our

assumption on the worst case, where all mismatches and
gaps occur in the common part of similar regions, is too
strict to improve the lower bound for different species.
Consequently, we think that the lower bound can be
improved by relaxing this worst case. For example, statis-
tical information such as the distribution of symbols may
be useful to relax this assumption.
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Fig. 10 Pruned matrix cells for pair 〈3, 4〉. (a) Proposed method on a single GPU, (b) previous method on a single GPU, (c) proposed method on dual
GPUs, and (d) previous method on dual GPUs. Matrix cells in the gray area are pruned

Applicability
Finally, we evaluated our interpair optimization method
in terms of the applicability. To do this, we compared our
method with banded alignment algorithms employed in
the second and third phases of SW#. Figure 12 shows the
breakdown of execution time for experimental datasets.
Notice that the three phases usually examine different
lengths of subsequences, because the first and second
phases find the ending and starting alignment positions,
respectively; the subsequences to be examined become
shorter as the alignment phase proceeds.
As shown in Fig. 12(a), phase 2 took around 110 s to exe-

cute the banded Smith-Waterman algorithm for genomes
of Bacillus anthracis. In contrast, execution times of phase
1 ranged from 93 s to 470 s, depending on the prun-
ing ratio. The shortest time of 93 s was achieved by our
interpair pruned and banded version that achieved the
best pruning ratio of 88 %. As compared with the banded
Smith-Waterman algorithm (phase 2), our pruned version
(without band optimization) took 1.3–2.6 times longer
execution time. These results indicate that execution time
is mainly dominated by the length of the optimal local
alignment rather than the width of the specified band. In

Fig. 12(a), irregular behaviors can be seen at pairs 〈2, 6〉,
〈3, 6〉, 〈4, 6〉 and 〈5, 6〉; the banded version took almost the
same execution time as the original version. These pairs
have relatively short local alignments as compared with
the remaining pairs (see Table 3). Because the first phase
tried to fill out the entire matrix, the band was not narrow
enough to achieve acceleration over the original version.
Notice that this situation was avoided at the last phase,
where the found starting and ending alignment positions
reduced the matrix size; the rectangle area to be filled out
was tightly bounded before computation.
The execution times of the last phase can be classified

into two groups: a group around 20 s and that around
230 s. This large gap between 20 s and 230 s was due
to the length of the optimal local alignment. The for-
mer group obtained four times longer local alignments
than the latter. Because the time complexity of the Myers-
Miller algorithm isO(mn), the former group can compute
16 times more matrix cells than the latter group.
Similar behaviors were observed with long sequences

except pair 〈8, 9〉. As shown in Fig. 12(b), phase 2 took
longer time than phase 1 (interpair pruned). This tim-
ing result implies that our pruning method is efficient
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Fig. 11 Pruned matrix cells for pair 〈2, 6〉. (a) Proposed method on a single GPU, (b) previous method on a single GPU, (c) proposed method on dual
GPUs, and (d) previous method on dual GPUs. Matrix cells in the gray area are pruned

Table 3 Summary of the alignment results. With respect to the genomes of Bacillus anthracis, the best and worst speedups on a single
GPU were obtained for pairs 〈3, 6〉 and 〈2, 5〉, respectively. Because our method estimates a lower bound from aligned pairs,
early-processed pairs such as 〈1, 2〉, 〈1, 5〉, 〈7, 8〉, 〈7, 9〉, 〈10, 11〉, and 〈10, 12〉 use L = 0. In contrast, our method fails to increase the
initial lower bound for pair 〈11, 12〉
Pair Initial lower bound L Score # of mismatches # of gaps Similar region

[ x, y] [ z, w]

〈2, 3〉 5,054,849 5,226,806 19 134 [101, 5,227,293] [1, 5,227,319]

〈2, 6〉 1,360,803 1,439,963 234 1,991 [3,781,820, 5,227,293] [3,783,219, 5,229,989]

〈3, 6〉 1,433,837 1,440,080 231 1,990 [3,781,847, 5,227,419] [3,783,219, 5,230,089]

〈1, 2〉 0 5,179,709 628 15,972 [1, 5,218,947] [1, 5,227,293]

〈1, 5〉 0 5,183,765 657 14,578 [1, 5,218,946] [2, 5,228,663]

〈2, 5〉 5,061,056 5,220,960 165 2,430 [1, 5,227,292] [2, 5,228,663]

〈7, 8〉 0 31,073,252 178,471 425,571 [570,587, 33,483,523] [13,789,327, 46,683,588]

〈7, 9〉 0 30,779,997 168,946 472,978 [799,132, 33,483,523] [14,990,367, 47,664,260]

〈8, 9〉 26,801,979 32,682,564 113,078 238,057 [12,915,809, 46,709,983] [13,921,377, 47,690,666]

〈10, 11〉 0 6,268,702 3,664,543 3,655,628 [27,961,827, 58,340,489] [25,036,812, 55,918,720]

〈10, 12〉 0 14,383,541 1,626,256 3,780,342 [27,437,780, 58,535,035] [32,521,523, 63,596,428]

〈11, 12〉 0 3,113,889 636,188 1,032,735 [25,014,281, 33,464,562] [33,028,220, 41,362,068]
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Fig. 12 Breakdown analysis. Breakdown of execution time for genomes of (a) Bacillus anthracis, (b) the human chromosome 21 and (c) the
human/gorilla/chimpanzee chromosome 19. The original version of phase 1 corresponds to the score-only Smith-Waterman algorithm with
intrapair pruning. Phases 2 and 3 correspond to a banded (score-only) Smith-Waterman algorithm with block pruning and a banded Myers-Miller
algorithm, respectively

against the increase of the sequence length. As compared
with pairs 〈7, 8〉 and 〈7, 9〉, pair 〈8, 9〉 deals with a 1.4
times longer sequence (see Table 2). This longer sequence
increased the execution time of phase 2 and that of phase
1 (original) by ×1.65 and ×1.69, respectively. In contrast,
that of phase 1 (interpair pruned) increased by ×1.07,
demonstrating an efficient pruning effect. In fact, our

interpair method pruned 73 % of matrix cells for pair
〈8, 9〉, whereas the original intrapair method pruned 50 %
of matrix cells for pairs 〈7, 8〉 and 〈7, 9〉.
In summary, banded alignment algorithms achieved

shorter execution time than pruning-based alignment
algorithms. However, band optimization can be inefficient
if the length of the local alignment is relatively short as
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compared with that of sequences. This inefficiency can fail
to accelerate the first phase, where the length of the local
alignment is unknown before computation. On the other
hand, pruning-based alignment algorithms, which avoid
unnecessary computation at runtime, are useful to deal
with this performance issue.

Conclusions
An interpair optimization method has been presented for
accelerating the all-pairs SW comparisons of sequences.
Based on the alignment results of the compared pairs, our
method computes a lower bound on the similarity score
for other pairs that have not yet been aligned. This lower
bound is then used as the initial lower bound to increase
the efficiency of an existing intrapair pruning method that
is capable of reducing the execution time of the matrix-
filling phase. The lower bound is further used for band
optimization. We have also proven that the computed
lower bound is larger than the optimal solution.
Experimental results show that our interpair optimiza-

tion method when running on a single GPU is 1.2 times
faster than an intrapair pruning method. This speedup
further increased to 1.4 times when run on dual GPUs.
The maximum pruning ratio was 88 % on a single GPU
and 49 % on dual GPUs. However, for the sequences
of different species, our method failed to improve the
initial lower bound; thus, that acceleration over the intra-
pair pruning method was not achieved. This failure was
because of the many gaps that needed to be aligned
between such dissimilar sequences.
Future study includes an application to multi-node sys-

tems such as CUDAlign 3.0 [17], which runs on a 64-node
cluster of GPUs.
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