
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. XX, NO. XX, XX 2014 1

Efficient Acceleration of Mutual Information
Computation for Nonrigid Registration using CUDA

Kei Ikeda, Fumihiko Ino, and Kenichi Hagihara

Abstract—In this paper, we propose an efficient acceler-
ation method for the nonrigid registration of multimodal
images that uses a graphics processing unit (GPU). The
key contribution of our method is efficient utilization of
on-chip memory for both normalized mutual information
(NMI) computation and hierarchical B-spline deformation,
which compose a well-known registration algorithm. We
implement this registration algorithm as a compute unified
device architecture (CUDA) program with an efficient
parallel scheme and several optimization techniques such
as hierarchical data organization, data reuse, and multires-
olution representation. We experimentally evaluate our
method with four clinical datasets consisting of up to
512 × 512 × 296 voxels. We find that exploitation of on-
chip memory achieves a 12-fold increase in speed over
an off-chip memory version and, therefore, it increases
the efficiency of parallel execution from 4% to 46%.
We also find that our method running on a GeForce
GTX 580 card is approximately 14 times faster than a
fully optimized CPU-based implementation running on
four cores. Some multimodal registration results are also
provided to understand the limitation of our method. We
believe that our highly efficient method, which completes
an alignment task within a few tens of second, will be
useful to realize rapid nonrigid registration.

Index Terms—GPU, CUDA, nonrigid registration, mu-
tual information, acceleration.

I. INTRODUCTION

IMAGE registration [1] is a technique for defin-
ing a geometric relationship between each point in

two images: a reference image and a floating image.
This technique plays an important role in computer-
assisted surgery. For example, it assists medical doc-
tors by relating preoperative images with intraoperative
images [2], [3] and by integrating multiple imaging
modalities such as computed tomography (CT), mag-
netic resonance imaging (MRI), and positron emission

K. Ikeda, F. Ino, and K. Hagihara are with the Graduate School
of Information Science and Technology, Osaka University, 1-5
Yamadaoka, Suita, Osaka 565-0871, Japan. E-mail: {i-kei, ino,
hagihara}@ist.osaka-u.ac.jp

Manuscript received December 25, 2012; revised August 17, 2013;
revised November 22, 2013.

tomography (PET) [4]. Such fused images are useful to
automate tumor detection and segmentation for image-
guided surgery [5], [6], [7].

Typically, registration algorithms consist of three key
components: a deformation model for objects, a cost
function associated with a similarity measure of refer-
ence and floating images, and an optimization scheme.
The alignment procedure for nonrigid objects, where
rigid or affine transactions are not sufficient [1], [8],
is called nonrigid registration. This procedure requires
extensive computation because it deals with deformable
objects, that compared to rigid objects, require free-
form deformation with many degrees of freedom. Thus,
minimizing execution time remains a challenging issue
to make nonrigid registration feasible for limited-time
situations.

The graphics processing unit (GPU) [9], which has
recently emerged as a small but powerful energy-efficient
accelerator, is promising hardware to meet this challenge.
With the release of the compute unified device architec-
ture (CUDA) [10], a C-like programming framework,
the GPU now can accelerate general-purpose as well
as graphics applications [11], [12], [13]. To exploit the
data parallelism inherent in the target application, the
GPU adopts a highly-threaded architecture that provides
several hundreds of computing cores with off-chip mem-
ory bandwidth above 190 GB/s. In addition to these
rich resources, the GPU has shared on-chip memory that
can be used as a manually managed cache. Though the
capacity of the shared memory is in the order of KB,
it can greatly improve application performance by data
reuse because it provides two orders of magnitude less
latency than off-chip memory.

Using CUDA, many researchers have accelerated
nonrigid registration algorithms for multimodal images.
Plishker et al. [14], [15] accelerated a registration algo-
rithm that uses B-splines [16] as a deformation model,
normalized mutual information (NMI) as a cost function
[17], and gradient descent as an optimization scheme.
For 256×256×256-voxel images, the execution time was
reduced to 250 s on a GeForce GTX 285 card. Similar
registration algorithms were independently accelerated
by Saxena et al. [18] and Modat et al. [19]. Saxena0000–0000/00$00.00 c© 2007 IEEE

IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. XX, NO. XX, XX 2014 2

et al. used a Parzen window approach to estimate NMI
values using shared memory. However, this Parzen-based
approach usually introduces volatility on account of its
heavy sampling sensitivity [20], and the approximation
cost can limit the performance [21].

In this paper, we propose a CUDA-based highly
efficient method for accelerating nonrigid registration of
multimodal images. Our method is based on Rueckert’s
registration algorithm [8], which consists of hierarchical
B-splines, NMI, and gradient descent. Each of these
components is commonly used in many registration
algorithms [22]. To the best of our knowledge, our
method is the first that accelerates nonrigid registration
by using fast shared memory without approximating
NMI values. The key ideas for enabling this optimization
are to exploit the sparsity of joint histograms needed for
NMI computation and organize joint histograms into a
hierarchy. These ideas reduce data size so that a joint
histogram can be stored in small capacity shared mem-
ory. An efficient merge mechanism, which minimizes
the amount of off-chip memory access, is integrated into
our method to maximize the benefit of shared resources.
Furthermore, our method achieves rapid B-spline de-
formation by using shared memory with a data reuse
technique [2] that reduces the amount of computation.
Source code is available at http://www-hagi.ist.osaka-
u.ac.jp/research/code/.

The remainder of the paper is organized as follows.
Section II introduces related work on acceleration of
image registration. Section III presents an overview of
the registration algorithm to be accelerated with our par-
allel method and the key concepts of CUDA needed for
achieving high efficiency. Section IV then describes our
parallel method. Section V shows several experimental
results. Conclusions are presented in Section VI.

II. RELATED WORK

Several groups [15], [18], [19], [23] have acceler-
ated nonrigid registration of multimodal images using
CUDA. However, previous methods [15], [23] suffered
from numerous accesses to off-chip memory because the
capacity of shared memory is not sufficiently large to
store a joint histogram. To avoid this, others [18], [19]
have reduced the memory usage with approximation.
However, this approach raised the issue of sampling
sensitivity. In contrast, our method not only avoids
approximation but also reduces the amount of expensive
off-chip memory access by utilizing shared memory. We
also describe in detail how B-spline deformation can be
accelerated with optimization techniques.

Mutual information (MI) based similarities can be ap-
plied to both rigid and nonrigid registration. Vetter et al.

[24] presented a sorting-based algorithm that computes
MI values for rigid registration of 128 × 128 × 128-
voxel images. Their algorithm reduces the frequency of
off-chip memory access by sorting reference voxels in
terms of intensity values. After this pre-processing stage,
sorted voxels are partitioned into blocks, which are then
copied to shared memory to enable rapid counting of
the number of intensities in parallel. However, sorting-
based methods require additional memory space to store
each voxel’s position information. Although this amount
of memory consumption can be disregarded for small
datasets, it is critical for large datasets because graphics
cards have a smaller memory capacity than CPUs. For
instance, our experimental card has 1.5 GB of off-chip
memory, whereas a pair of 512×512×512-voxel volume
datasets requires 2 GB of off-chip memory if each voxel
is associated with 4 bytes of an intensity value and 4
bytes of a three-dimensional (3-D) coordinate. Similar
sorting-based algorithms were presented by Chen et al.
[20], Lou et al. [25], and Shams et al. [21] who aligned
230 × 230 × 239-voxel, 256 × 256 × 68-voxel, and
512× 512× 29-voxel datasets, respectively.

Shams et al. [26] also presented alternative methods
for MI computation. Their methods allow threads to
have an own joint histogram to avoid the performance
penalty of atomic writes [10], which are needed to
serialize simultaneous accesses to the same memory
address (i.e., the same bin in a joint histogram). Owing
to local joint histograms, parallel threads are allowed
to count the number of intensities in their responsible
region independently. After this parallel count, local
joint histograms have to be merged into a single joint
histogram, which is required to compute MI values.
This merge operation can be parallelized by applying a
tree-based reduction to local joint histograms. Although
their reduction-based methods achieved more successful
acceleration than a CPU-based method, the performance
can be further increased by shared memory. A similar
reduction-based method is presented by Cheng et al.
[27].

Several groups [28], [29], [30] employed a GPU to
accelerate nonrigid registration of single-modal images.
Compared to multimodal similarity measures, single-
modal measures, such as the correlation coefficient
and the sum of squared differences, are less compute-
intensive [22] and have a simple structure that can easily
be parallelized on a GPU.

Earlier projects accelerated nonrigid registration using
high-performance computing systems such as shared-
memory multiprocessors [2], [31], clusters of PCs [32],
field programmable gate arrays [33], [34], and the Cell
Broadband Engine [35]. These parallel algorithms cannot

IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. XX, NO. XX, XX 2014 3

be directly implemented on a GPU, which has a unique
memory hierarchy and processor architecture. However,
previous optimization techniques, such as data reuse [2]
and a multiresolution representation [16], can be adapted
to CUDA-based implementations. This will be discussed
in more detail in Section IV.

III. PRELIMINARY CONSIDERATIONS

Let R and F be the reference image and the float-
ing image, respectively, with the image domain Ω =
{(x, y, z) | 0 ≤ x < X, 0 ≤ y < Y, 0 ≤ z < Z},
where X , Y , and Z are image sizes in the x, y, and z
directions, respectively. Let T : (x, y, z) 7→ (x′, y′, z′) be
a transformation of any voxel (x, y, z) in image F to its
corresponding voxel (x′, y′, z′) in image R. Rueckert’s
registration algorithm [8] then performs an alignment
by finding the best nonrigid transformation TOPT that
minimizes a cost function C:

TOPT = arg min
T
C(R, T (F)). (1)

Here, the cost function C is associated with a similarity
measure S defined between images R and F :

C = −S(R, T (F)). (2)

A. Normalized Mutual Information

NMI represents the amount of information that one
image contains about a second image. According to its
definition, our similarity measure S is given by

S(R, F) =
H(R) + H(F)

H(R, F)
, (3)

where H(R) represents the entropy of image R, and
H(R, F) represents the joint entropy of images R and
F . The entropy H(R) and the joint entropy H(R, F)
are given by

H(R) = −
∑
r∈R

pR(r) log pR(r), (4)

H(R, F) = −
∑

r∈R,f∈F

pRF (r, f) log pRF (r, f),(5)

respectively, where pR(r) is the marginal distribution of
R and pRF (r, f) is the joint probability distribution of R
and F . The former can be obtained from the histogram
of R whereas the latter can be obtained from the joint
histogram of R and F .

The joint histogram of two images is a 2-D matrix
containing the number of pairs of intensity values at the
same position (x, y, z) ∈ Ω in the two images. Suppose
that reference and floating images consist of d grayscale
levels. Their joint histogram then contains d2 bins, and

(a) (b)

Fig. 1. A 2-D example of the B-spline deformation model: (a)
mesh of control points with uniform spacing δ placed over the image
domain and (b) 4δ×4δ neighborhood domain Di,j affected by control
point φi,j .

thus joint histogram computation can be regarded as
a mapping problem from XY Z-voxel space onto d2-
bin space. The memory access pattern inherent in this
computation is the most important issue to maximize
performance: (1) irregular access to bins and (2) serial-
ized access to the same bin.

B. B-spline Deformation

As shown in Fig. 1(a), a B-spline free-form defor-
mation represents a nonrigid transformation by manipu-
lating a mesh of control points overlaid on the image
domain Ω. Let Φ be a 3-D mesh of control points
φi,j,k ∈ Φ, and let δ be the initial distance between
the control points. A nonrigid transformation T of any
voxel (x, y, z) ∈ Ω is then calculated by its surrounding
4× 4× 4 neighborhood of control points as follows:

T (x, y, z) =
3∑

l=0

Bl(u)φ̂i+l, (6)

φ̂i+l =
3∑

m=0

3∑
n=0

Bm(v)Bn(w)φi+l,j+m,k+n,(7)

where Bl (0 ≤ l ≤ 3) represents the l-th basis function
of cubic B-splines [16], i = bx/δc − 1, j = by/δc − 1,
k = bz/δc− 1, u = x/δ−bx/δc, v = y/δ−by/δc, and
w = z/δ−bz/δc. In other words, B-spline deformations
are locally controlled because each control point φi,j,k

affects only its 4δ × 4δ × 4δ neighborhood subdomain
Di,j,k, as shown in Fig. 1(b).

Note that the value of φ̂i+l is identical for all voxels in
one row located within the same cell of the mesh Φ [2].
Because such voxels have the same coordinates y and
z, they are transformed according to the same indexes
j and k (i.e., the same control points) and the same
relative positions v and w within the cell (i.e., the same

IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. XX, NO. XX, XX 2014 4

coefficients). Consequently, Rohlfing et al. [2] reduced
the amount of computation by reusing Eq. (7) between
voxels.

C. Steepest Descent Optimization

Rueckert’s algorithm [8] employs steepest descent op-
timization to find the optimal transformation parameters
Φ that minimize the cost function C. To estimate the
gradient vector ∇C = ∂C/∂Φ with respect to the trans-
formation parameters Φ, the algorithm computes a local
gradient ∂C/∂φi,j,k for each control point φi,j,k ∈ Φ by
using the finite-difference approximation.

Because the deformation of φi,j,k affects only its
neighborhood domain Di,j,k, a precomputation technique
[36] is useful to accelerate this gradient computation.
That is, a joint histogram of unaffected region Ω−Di,j,k

is computed in advance and is then compounded with a
local joint histogram of the affected region Di,j,k for
each control point displacement. This precomputation
technique reduces the computational requirement to 1/6
because joint histograms are computed for 6 displace-
ments (±x,±y,±z) per control point.

The optimization procedure mentioned above is ac-
celerated with a multiresolution representation that or-
ganizes both the images and the control point mesh in a
hierarchy. The image resolution γ and the control point
spacing δ are then progressively refined at each level of
the hierarchy.

D. Compute Unified Device Architecture (CUDA)

In general, CUDA programs [10] consist of host code
and device code, which run on a CPU and a GPU,
respectively. The host code typically invokes the device
code on the GPU to accelerate the time consuming part
of the application. The device code can be implemented
as a function called kernel. The GPU executes a kernel
with tens of thousands of CUDA threads to achieve
acceleration by exploiting the data parallelism in the
application.

These threads compose a series of thread blocks to
adapt their organization to the hierarchical processor
architecture [9] deployed for the GPU. A thread block is
then partitioned into a series of warps. A warp contains
32 threads, which are executed in a single-instruction,
multiple-thread (SIMT) manner [10]. On account of this
SIMT execution, a branch within a warp can result
in a thread divergence, which significantly lowers the
efficiency of parallel execution.

As shown in Fig. 2, threads belonging to the same
thread block are allowed to share small capacity but
fast memory. In the current architecture, the maximum

Grid

Off-chip memory

Thread block

Thread

Shared on-chip memory

...Thread Thread

Thread block

Thread

Shared on-chip memory

...Thread Thread

...

Thread block

Thread

Shared on-chip memory

...Thread Thread

Fig. 2. An overview of CUDA. Shared on-chip memory allows
threads in the same thread block to reuse data in order to save off-
chip memory bandwidth for memory-bound applications.

size of shared memory a thread block can allocate
is 48 KB. By contrast, any thread can access large
capacity but slow off-chip memory. Off-chip memory
can be allocated as a texture, which provides hardware
accelerated interpolation of texel values. This ability is
useful to accelerate deformation of the floating image on
a GPU.

CUDA provides a synchronization mechanism for
threads of the same thread block, but not for those of
different thread blocks. One special exception is the
family of atomic operations, which is useful to count the
number of intensities for histogram computation. Atomic
operations are available to both on-chip and off-chip
memories; however, they can cause thread serialization.
The only way to achieve global synchronization is to
finish and restart the running kernel. However, this
increases the amount of off-chip memory access because
register files and shared memory are cleared at the end
of kernel execution. From this point of view, a series
of kernel invocations should be unified into a single
invocation if the kernel can be implemented without
global synchronization.

In summary, the important GPU concepts that are
strongly related to our registration algorithm are four-
fold.

C1: saving off-chip memory accesses by data reuse on
shared memory.

C2: reducing the amount of off-chip memory access by
kernel unification.

C3: maximizing GPU resource utilization by texture-
based interpolation.

C4: maximizing the efficiency of SIMT execution by
avoiding thread divergence.

IV. PROPOSED PARALLEL METHOD

Algorithm 1 shows the pseudocode for our parallel
method, which produces optimized control points Φ
for two images. Similar to Rueckert’s algorithm, our
parallel method uses multiresolution representation to
accelerate the optimization procedure: image resolutions

IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. XX, NO. XX, XX 2014 5

Algorithm 1 GPU-accelerated nonrigid registration based on Rueckert’s registration algorithm [8].
Input: A pair 〈R,F 〉 of reference and floating images, image resolutions γ1, γ2, . . . , γL and control point spacing δ1, δ2, . . . , δL

of L levels, and a threshold ε for minimization.
Output: Optimized control points Φ.

1: h← 1 . Initialize the deformation level
2: while h ≤ L do
3: Transfer images R and F of resolution γh from the CPU to the GPU
4: Initialize the control points Φ with δh on the GPU
5: repeat . Optimization step
6: Compute the cost function C(Φ) on the GPU
7: Compute the gradient vector ∇C = ∂C/∂Φ and the gradient norm ‖∇C‖ on the GPU
8: if C(Φ +∇C/‖∇C‖) < C(Φ) then
9: Φ← Φ +∇C/‖∇C‖

. Update control points on the GPU
10: end if
11: Transfer ‖∇C‖ from the GPU to the CPU
12: until ‖∇C‖ ≤ ε
13: h← h + 1 . Increase the deformation level
14: end while
15: Transfer Φ from the GPU to the CPU

γ1, γ2, . . . , γL and control point spacing δ1, δ2, . . . , δL,
where L represents the number of deformation levels.

Our method mainly consists of similarity computation
and gradient computation, which can be found at lines 6
and 7, respectively. Both require histogram computation
and B-spline deformation, which limit the registration
performance owing to memory intensive operations. We
accelerate these processes using the GPU, which mini-
mizes the amount of off-chip memory access. To achieve
this, both deformation and histogram computation are
implemented within a single kernel execution (concept
C2). This implementation strategy avoids storing the
transformed image T (F) in off-chip memory because
it allows T (F) to be computed in an on-the-fly manner
while computing a joint histogram. Similarly, gradient
computation and control point update, which can be
found at lines 7 and 8–10, respectively, are also imple-
mented within a single kernel execution (concept C2).

We use different parallel schemes for gradient and
similarity computations because these computations have
slightly different parallelism: the former creates and
compounds |Φ| histograms for local regions, whereas the
latter creates a single histogram for the whole domain
Ω. As shown in Fig. 3, our method exploits data par-
allelism in the similarity computation by decomposing
the image domain Ω into pieces and assigning each
to a thread block. Similar to Shams’ method [26], our
parallel scheme maintains local histograms in order to
reduce the performance penalty of atomic operations.
However, our method differs in (1) using shared mem-
ory (concept C1), (2) reducing the amount of off-chip

Image R

Image T(F)

Local
histograms

Global
histogram

Joint
entropy

Parallel reduction

...Ω

0ω

1ω

2ω

3ω

1ω0ω
2ω 3ω

1ω0ω
2ω 3ω

Fig. 3. Parallel scheme for similarity computation. Each thread block
is responsible for a piece of the image domain and owns a local joint
histogram. Local histograms are merged into a global histogram using
atomic operations. The global histogram is then reduced into the joint
entropy by a parallel tree-based approach [37].

memory access (concept C2), and (3) maintaining a
histogram per thread block rather than per thread. The
details of our contribution will be presented in Section
IV-A. After this histogram computation, the joint entropy
H(R, T (F)) and the entropies H(R) and H(T (F)) are
computed in parallel to obtain a similarity value. This
computation can be easily parallelized by iterating tree-
based reduction operations [37] on histograms.

Data parallelism in the gradient computation is ex-
ploited by assigning each control point φi,j,k ∈ Φ to a
thread block, as shown in Fig. 4. In other words, our
scheme creates |Φ| global joint histograms simultane-
ously, because only a small region Di,j,k is referenced to
generate each joint histogram. Thus, more parallelism is
exploited by simultaneous computation of multiple joint

IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. XX, NO. XX, XX 2014 6

Control
points F

Local
histograms

Global
histograms

Joint
entropies

...

0,0φ

1,0φ 1,1φ

0,1φ

1,1D−Ω

0,1D−Ω

0,0D−Ω

1,0D−Ω

1,1D

0,1D

1,0D

0,0D Ω

Ω

Ω

Ω

...

...

...

Parallel reduction

Fig. 4. Parallel scheme for gradient computation. Each thread
block is responsible for a control point and owns the global joint
histogram for the point. The global joint histogram is computed with
a precomputation technique [36].

histograms. However, this suppresses resource usage, and
therefore makes it difficult to store per-thread histograms
even in large capacity off-chip memory. Accordingly,
we decided to maintain a histogram per thread block.
Although our scheme requires atomic operations within
each thread block, this serialization overhead can be
reduced by using shared memory. Note that the global
joint histogram obtained in similarity computation can
be reused to precompute joint histograms for unaffected
regions Ω−Di,j,k in gradient computation.

A. Acceleration of Joint Histogram Computation

In general, medical images have at least d = 256
grayscale levels, and the data size of a joint histogram
reaches 256 KB if we use 4-byte bins. To store this
data within 48 KB of shared memory (concept C1),
our method (1) exploits the sparsity of joint histograms
and (2) minimizes the bin size. By using this small
data structure, our method stores 8-bit bins in shared
memory and 32-bit bins in global memory. We also
present an atomic-based parallel mechanism needed to
handle simultaneous bin accesses and different bin sizes
between shared memory and global memory.

Figure 5 shows a joint histogram generated from
clinical images. As shown in this figure, as floating
image T (F) converges to an optimal solution, nonempty
bins converge around the diagonal of the 2-D matrix. For
multimodal images, a modality transformation technique
[38], [39] is useful for producing this kind of conver-
gence. Therefore, if all nonempty bins appear around
the diagonal, our method switches behavior to use shared
memory by eliminating empty bins located far from the
diagonal. This implies that, like Shams’ method [26], our
method initially uses off-chip memory. However, owing
to our multiresolution approach, such initial and coarse

0

255

R
0

T(F)

255 1

> 30,000

(a)

0

255

R
0

T(F)

255 1

> 30,000

(b)

Fig. 5. Joint histograms of dynamic contrast enhanced CT images:
(a) before and (b) after registration. Empty bins are white. Nonempty
bins are colored from blue to red as values increase.

grained steps take less time than the succeeding fine-
grained steps. Because we eliminate only empty bins,
the truncated image information never affects registration
results.

Let P be a parallelogram with width W and height
d − 1 having its center on the diagonal, as shown in
Fig. 6(a). Suppose that all nonempty bins exist within P .
Our method will store bins located within P , as shown in
Fig. 6(b). Bins outside P are not stored because they are
empty. More formally, bins of the naive joint histogram
are transformed into those of our joint histogram as
follows:

(r′, f ′) = (r, f − r + bW/2c), (8)

where (r, f) represents the location of the source bin
in the naive data structure and (r′, f ′) represents the
location of the destination bin in the proposed data
structure. The width W is determined according to d, the
bin size b (in bits), and the capacity of shared memory.
For instance, the data size of P reaches 256W in bytes
if 8-bit bins (b = 8) are used for 8-bit (d = 256) images.
Using this configuration, P can be stored in 48 KB of
shared memory if W ≤ 192.

Note that P in Fig. 6(a) includes wasted bins at the top
and bottom area. This wasted region simplifies address
computation in our kernel (i.e., Eq. (8)). Without this
wasted region, we have to add a branch in the kernel to
obtain a bin address correctly. In our preliminary exper-
iments, we found that this additional branch increased
execution time by 25%.

In addition to the number of bins, we minimize the
bin size b according to the thread block size S. Because
S threads, which share a joint histogram, increment S
bins at a voting step, b ≥ dlog2 Se must be satisfied to
avoid an overflow during this parallel step. Therefore,
the bin size b of 8 bit is sufficient for our method,
which uses S = 256 threads. However, overflows cannot
be avoided if voting steps are repeated. Consequently,
when our method detects a maximum bin in shared

IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. XX, NO. XX, XX 2014 7

Algorithm 2 Joint histogram computation using shared memory with a merge mechanism.
Input: A pair 〈R, F 〉 of reference and floating images, and their image sizes X , Y , and Z.
Output: A joint histogram h in off-chip memory.

1: Compute the responsible line (x, y) according to the thread index and the thread block index
2: Initialize 32-bit joint histogram h and 8-bit joint histogram hs in off-chip memory and shared memory, respectively
3: Synchronization
4: for z ← 0 to Z − 1 do
5: r ← R(x, y, z) . Fetch a voxel value
6: f ← F (x, y, z) . Fetch an interpolated voxel value
7: f ′ ← f − r + bW/2c
8: if hs(r, f ′) = 0xff then . Merge a bin to avoid an overflow
9: val← atomicExch(hs(r, f ′), 0)

10: atomicAdd(h(r, f), val)
11: end if
12: atomicAdd(hs(r, f ′), 1)
13: Synchronization
14: end for
15: Merge hs into h using atomicAdd()

0

P 2/Wr +

 2/Wr −

W

r
f

r0 d − 1

d − 1

(r, f)

(a)

0
0

W

d − 1

(r’, f ’)

(b)

Fig. 6. Joint histogram organization: (a) naive data structure and
(b) our data structure.

memory, it merges the bin into the corresponding bin
in off-chip memory. Although this merge mechanism
causes detection overhead, it reduces the amount of off-
chip memory access, which determines the performance
of joint histogram computation. Our method uses two
merge mechanisms for similarity and gradient computa-
tions. For similarity computation, where thread blocks
share a single global histogram, the bin is merged with
an atomic operation. For gradient computation, where
thread blocks possess local histograms, the bin can be
merged without an atomic operation.

Algorithm 2 shows our pseudocode for the kernel that
computes a joint histogram for similarity computation.
Note that the atomic functions in the pseudocode operate
on 8-bit data. We implemented these functions on the ba-
sis of the original atomic functions that operate on 32-bit
integer values. Note that atomicExch() is also necessary
to deal with the case in which multiple threads detect the
maximum value at the same bin simultaneously. The final
merge operation at line 15 is performed in parallel by

assigning d2/S responsible bins to each thread. Thus, our
hierarchical organization cannot be simply implemented
by placing joint histograms in shared memory.

Note that the branch at line 8 can cause thread diver-
gence (concept C4). However, this branch reduces the
amount of global memory access, which takes hundreds
of cycles. Consequently, the benefit of reduced mem-
ory access outperforms the penalty of serial execution.
Actually, the performance was decreased by 90% after
eliminating this branch from the kernel. This preliminary
result indicates that a naive utilization of shared memory
is not sufficient to achieve high efficiency on the GPU.

Finally, our method switches behavior according to
the degree of convergence. At each optimization step,
threads check if all nonempty bins exist within P or not.
To achieve this, each thread independently evaluates the
following condition for their target bin located at (r, f):

r − bW/2c ≤ f ≤ r + bW/2c. (9)

If Eq. (9) is true for all nonempty bins, threads use shared
memory in the succeeding steps. Otherwise, all bins are
computed using global memory.

B. Acceleration of B-spline Deformation

Our method takes advantage of hardware accelerated
trilinear interpolation by storing reference and floating
images in textures (concept C3). The data parallelism
in the B-spline deformation can be easily exploited by
assigning each voxel to a thread. Suppose that voxels
are stored in the order x, y, z, and the x-axis has the
smallest stride between adjacent voxels. We then decided
to run XY threads for XY Z voxels so that warps can

IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. XX, NO. XX, XX 2014 8

minimize the stride of memory access: each thread is
responsible for Z voxels in a line, as shown in Fig. 7. The
following three optimization techniques are integrated
into our parallel scheme.

The first technique is data reuse [2] using shared
memory (concept C1). To maximize the data reuse effect
mentioned in Section III-B, we rewrite Eqs. (6) and (7)
as follows:

T (x, y, z) =
3∑

n=0

Bn(w)φ̌k+n, (10)

φ̌k+n =
3∑

l=0

3∑
m=0

Bl(u)Bm(v)φi+l,j+m,k+n.(11)

Our method then precomputes φ̌k+n on the GPU, for all
relative positions u and v. These results are stored in reg-
ister files to save clock cycles for voxels in the same cell
of the mesh Φ (see Fig. 7). Consequently, our scheme
allows threads to reuse data within their responsible line
(i.e., between neighbor voxels along the z direction).
Furthermore, threads in the same thread block can reuse∑3

l=0 Bl(u)φi+l,j+m,k+n between neighbor voxels along
the y direction through the use of shared memory. This
data reaches 12δ/γ bytes because a cell contains δ/γ
voxels in the y direction and φ̌i+l is a 3-D vector of
single-precision elements.

The second technique is precomputation of B-spline
coefficients. Similar to Saxena et al. [18], we first pre-
compute B-spline coefficients Bl (0 ≤ l ≤ 3) on the
CPU and then store them as a lookup table in shared
memory (concept C1). This lookup table, in a single-
precision format, consumes 16δ/γ bytes because each
cell of the mesh Φ has δ/γ voxels in all directions.

Finally, we eliminate divergent branches (concept C4).
The threads responsible for border voxels can access
outside the image domain Ω because every thread refers
its 4 × 4 × 4 neighborhood control points. To avoid
such out of boundary accesses, we place dummy control
points around the image domain. Such dummy points
eliminate divergent branches because threads do not have
to check their accessing address in advance.

V. EXPERIMENTAL RESULTS

To evaluate our method in terms of execution time,
we conducted experiments using a desktop PC. Our
experimental machine had a quad-core Intel Core i5-
2500K processor with 16 GB RAM and a 512-core
NVIDIA GeForce GTX 580 graphics card with 1.5 GB
VRAM. The graphics card was connected with a PCI
Express bus (generation 2). We used CUDA 4.2 [10]
running on Windows 7.

x

y

z

 voxels/γδ

 voxels/γδ
 voxels/γδ

Fig. 7. Parallel B-spline deformation with data reuse. A cube with
gray lines represents a mesh cell. Thread (x, y) is responsible for
line (x, y) containing Z voxels. Each thread is allowed to reuse data
between δ/γ voxels in the same cell of the mesh.

In addition to our GPU-based method, we imple-
mented a CPU-based method. The GPU-based method
was implemented with CUDA and the CPU-based
method was multithreaded using OpenMP directives
[40]. Our CPU implementation ran 3.3 times faster than
a single-threaded implementation when using all four
cores.

We applied our method to liver datasets consisting of
512 × 512 × 296 voxels with d = 256 grayscale levels.
These datasets were four pairs of dynamic contrast-
enhanced CT images acquired at Osaka University Hos-
pital (Suita, Osaka, Japan). Each pair consisted of vol-
umes at two different time-phases: one was the early ar-
terial phase, where hypervascular tumors were enhanced
via the hepatic artery, and the other was the portal-venous
phase, where hypovascular tumors were enhanced via
the normal liver parenchyma. The volumes acquired at
different time-phases are not usually registered due to
respiratory movements, because CT data acquisition (i.e.,
the time phase) is not precisely synchronized with the
respiratory cycle. Registration of these volumes is highly
desirable to assist hepatic disease diagnosis and surgi-
cal planning. For example, aligned images of the liver
facilitate lesion identification because they accurately
correlate the portal/hepatic veins and tumors enhanced
at different phases [41].

Figure 8 shows an example of reference and floating
images with checkerboard visualization. For datasets #1–
#4, the maximum deformations after registration were
16.1, 11.4, 10.1, and 15.7 mm, respectively. The local
large deformations in these datasets were due to the
respiratory movements. Table I shows the parameter
values used for the experiments. We refined images and
control points Φ by three levels. Given W = 177,
our method used shared memory in all deformation
levels except the first level. Note that the hierarchical
deformation model is the key to deal with the local large
deformations. Actually, we failed to align the images if

IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. XX, NO. XX, XX 2014 9

(a) (b) (c) (d)

Fig. 8. Examples of registration results: (a) reference image and (b) floating image. Checkerboard visualization showing reference and
floating images alternately: (c) before and (d) after registration.

TABLE I
PARAMETER VALUES USED FOR EXPERIMENTS.

Level h X × Y × Z (voxel) γ (mm) δ (mm) ε W (bin)
1 128 × 128 × 74 2.68 42.88 0.001 177
2 256 × 256 × 148 1.34 21.44 0.001 177
3 512 × 512 × 296 0.67 10.72 0.001 177

28.5 27.9 24.5 23.6

398.8 391.2
332.9 308.4

0

100

200

300

400

500

Dataset #1 Dataset #2 Dataset #3 Dataset #4

E
xe

cu
tio

n
tim

e
(s

)

Our method CPU-based method

Fig. 9. Execution times for four datasets. The CPU-based method
exploits all four cores.

we used only the finest deformation level.

A. Registration Time

Figure 9 shows the execution times for four datasets.
Our GPU-based method and the CPU-based method
processed the same number of optimization steps to
complete the alignment. Depending on the dataset to be
aligned, registration times of our method ranged from
23.6 to 28.5 s. The different results are due to the number
of optimization steps at the finest deformation level,
which varies according to the target dataset. Despite this
difference, our method reached speeds approximately 14
times faster than the CPU-based method, successfully
demonstrating the impact of GPU-based acceleration.
Data transfer between the CPU and GPU was not a
performance bottleneck as the transfer time of 0.11 s
was negligible compared to the total time.

We next compared our registration throughput with
those reported by previous papers [15], [18], [19], [23],
which used different datasets, optimization parameters,
and machines. In addition, the original implementation
of Modat’s method [19] was downloaded and compared

using our dataset and machine. Because their method
uses a different optimization scheme, we used a default
parameter that produces similar alignment results in
terms of the maximum deformation. The remaining pa-
rameter values in Table I were same as those employed in
our method. Furthermore, some previous methods [21],
[23], [24], [25] for NMI computation were implemented
by ourselves to integrate them into our registration code
and measure their throughputs using the same dataset and
optimization parameters on the same platform. However,
sorting-based methods [21], [24] change the order of
voxels, so that they cannot be used with the data reuse
and precomputation techniques implemented in our de-
formation code. The remaining methods [23], [25] used
our efficient deformation code.

Table II shows these comparative results, including
deployed GPUs and their peak performance in terms of
off-chip memory bandwidth and arithmetic instruction
throughput, which can be computed from the hard-
ware specification. The peak performance is presented
to clarify that the memory bandwidth determines the
GPU-based registration performance. The registration
throughput is given by XY Z/T1, where T1 represents
the execution time spent for dataset #4.

Our method achieved a throughput greater than 3200
Kvoxel/s, which is at least five times higher than the
throughputs of previous methods. Although a part of
this comparison is not completely fair owing to dif-
ferent hardware components, datasets, and optimization
parameters, we believe that the exploitation of shared
memory is the key to maximizing the GPU registration
performance, which is primarily dominated by memory-
intensive operations. Note here that the speed increase
of the first deformation level was a factor of 10, which
is 60% lower than those of the remaining levels. This
limited increase was due to the degree of convergence,
which was not sufficient to use shared memory at the
first level. Consequently, our throughput decreases to

IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. XX, NO. XX, XX 2014 10

TABLE II
PERFORMANCE COMPARISON OF GPU-BASED NONRIGID REGISTRATION METHODS. THE RESULTS OF PREVIOUS METHODS WITH *
WERE QUOTED FROM THE ORIGINAL PAPERS, WHICH USED DIFFERENT DATASETS, OPTIMIZATION PARAMETERS, AND MACHINES.

OTHER RESULTS WERE OBTAINED USING DATASET #4 ON OUR EXPERIMENTAL MACHINE.

Method GPU Bandwidth Arithmetic X × Y × Z Throughput Execution time
(GB/s) (GFLOPS) (voxel) (Kvoxel/s) (s)

This paper GTX 580 192 2372 512 × 512 × 296 3288 23.6
Han [23] 581 133.6
Modat [19] 445 174.4
Vetter [24] 393 197.3
Shams [21] 270 287.5
Lou [25] N/A** N/A**
Plishker* [15] GTX 285 159 1063 256 × 256 × 256 171 98.0
Han* [23] GTX 280 142 933 256 × 256 × 128 442 19.0
Saxena* [18] C1060 102 933 512 × 512 × 98 382 67.2
Modat* [19] 8800 GTX 86 518 181 × 217 × 181 169 42.0
**: execution failed due to memory exhaustion

TABLE III
BREAKDOWN OF THE EXECUTION TIMES REQUIRED FOR AN

OPTIMIZATION STEP AT DEFORMATION LEVEL h. AVERAGE TIMES
ARE OBTAINED USING DATASET#1.

Breakdown Our method (s) CPU-based method (s)
h = 1 h = 2 h = 3 h = 1 h = 2 h = 3

Gradient comp. 0.08 0.31 2.73 0.83 5.33 43.11
Similarity comp. 0.01 0.01 0.09 0.08 0.54 4.18
Total 0.09 0.32 2.82 0.91 5.87 47.29

approximately 1940 Kvoxels/s for 256×256×148-voxel
datasets.

Table III shows the breakdown of execution times for
an optimization step. The speed increases for similarity
computation are factors of 8.0, 54.0, and 46.4 at the
first, second, and third levels, respectively. The increase
between the first and second levels is achieved by the
exploitation of shared memory. In contrast, the decrease
between the second and third levels is due to the dis-
tribution of nonempty bins in joint histograms. As we
mentioned in Section IV-A, the nonempty area in joint
histograms becomes smaller as the solution converges
to the local optimum. Consequently, atomic operations
cause more conflicts in the finest level. Although our
method minimizes this penalty by using low-latency
shared memory and by allowing thread blocks to have
local joint histograms, this slowdown cannot be com-
pletely avoided owing to the lack of parallelism.

A similar up-down trend can be found among the
speed increases of gradient computation. However, at
factors of 10.4, 17.2, and 15.8 for the first, second,
and third levels, respectively, they are relatively lower
than those of similarity computation. These lower speed
increases are due to memory bandwidth exhaustion be-
cause our method processes |Φ| joint histograms simul-
taneously.

B. Efficiency Analysis

Table IV shows a comparison of efficiencies, through-
puts, and execution times of MI computation with pre-
vious methods. The throughputs were measured using
dataset #1 at the finest resolution level h = 3. For
measurement, we used the original code of Shams’
method [26]. The remaining methods [21], [24], [25]
were implemented by ourselves. We also implemented
two additional versions of our method to clarify the im-
pact of our merge mechanism. Owing to shared memory,
our method increased throughput from 588 Mvoxel/s
to 913 Mvoxel/s. Furthermore, our merge mechanism
allows threads to write a single bin instead of all the
bins they are responsible for, and thus the throughput
reached 7390 Mvoxel/s. This implies a 12-fold speed
increase over the off-chip memory version. We also
found that previous methods completed MI computation
within 40 ms for small datasets. On the other hand, our
method realized rapid MI computation for large datasets
within 15 ms by using shared memory. We think that
our sorting-based implementations [21], [24] achieved
reasonable throughputs for our GTX 580 card, because
each measured throughput linearly increased with the
peak memory bandwidth of the deployed GPU. With
respect to Vetter’s method, our measured throughput
(2452 Mvoxel/s) was 1.3 times higher than the original
throughput (1872 Mvoxel/s), and this speedup factor is
close to that of the peak memory bandwidth (1.2 =
192/159).

Next, we evaluated the efficiency of our MI com-
putation in terms of memory throughput because this
computation is a memory-bound operation. Because an
increment of a bin loads two 32-bit voxel values and
stores a 32-bit integer value, the throughput can be
given by 3× 4×XY Z/T2 in B/s, where T2 represents

IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. XX, NO. XX, XX 2014 11

TABLE IV
EFFICIENCY COMPARISON OF GPU-BASED MUTUAL INFORMATION COMPUTATION. VERSION 1 USES SHARED MEMORY BUT THREADS

MERGE ALL THEIR RESPONSIBLE BINS RATHER THAN A SINGLE BIN EVERY TIME THEY FIND A MAXIMUM BIN. VERSION 2 USES
OFF-CHIP MEMORY INSTEAD OF SHARED MEMORY. THE RESULTS OF PREVIOUS METHODS WITH * WERE QUOTED FROM THE ORIGINAL

PAPERS, WHICH USED DIFFERENT DATASETS AND MACHINES. THE PERFORMANCE OF SHAMS* [26] IS THAT PRESENTED IN [21].

Method GPU Bandwidth Arithmetic X × Y × Z Throughput Efficiency Execution time
(GB/s) (GFLOPS) (voxel) (Mvoxel/s) (%) (ms)

This paper GTX 580 192 2372 512 × 512 × 296 7390 46 10.5
Version 1 913 6 85.0
Version 2 588 4 132.0
Vetter [24] 2452 12 41.5
Shams [21] 261 2 297.3
Shams [26] 132 1 589.1
Lou [25] N/A** N/A** N/A**
Vetter* [24] GTX 285 159 1063 128 × 128 × 128 1872 14 1.1
Shams* [21] GTX 280 142 933 512 × 512 × 29 200 2 38.0
Shams* [26] 100 1 76.0
Chen* [20] FX 5800 102 933 230 × 230 × 239 937*** 11*** 13.5***
: execution failed due to memory exhaustion, *: with deformation

the execution time of MI computation. The throughput
of our MI computation reached 88.7 GB/s, which is
equivalent to 46% of the peak bandwidth of off-chip
memory. Considering the irregular memory access pat-
tern and the conflicts of atomic operations, we believe
that, on account of shared memory usage, this efficiency
is relatively high. The efficiencies of previous methods
ranged from 2% to 14%.

The throughput mentioned above represents the effi-
ciency of similarity computation. Next, we analyzed the
efficiency of gradient computation. At the finest defor-
mation level, it took T3 = 2.18 s to compute |Φ| joint
histograms six times for control point displacement. Be-
cause each joint histogram covers (4δ/γ)3-voxel space,
the throughput can be obtained by 3 × 4 × 6 × |Φ| ×
(4δ/γ)3/T3, where |Φ| = dX/(δ/γ)e × dY/(δ/γ)e ×
dZ/(δ/γ)e. The throughput of our MI computation in
gradient computation reached 168.4 GB/s, which is 88%
of the peak bandwidth of off-chip memory. Because this
efficiency is higher than that of similarity computation,
our parallel scheme is useful for increasing the efficiency
of parallel gradient computation.

Our GPU-accelerated B-spline deformation was 6.2
times faster than the CPU-based method for all defor-
mation levels. Therefore, the performance of B-spline
deformation in our method does not depend on the
deformation level or the position of control points.
The achieved execution time was 0.08 s at the finest
deformation level. This execution time was reduced
from the original time of 1.23 s. Rohlfing’s data reuse
technique [2] reduced the execution time to 0.13 s, and
our divergent elimination technique further reduced the
time to 0.08 s.

C. Registration Accuracy

As mentioned in Section V-A, our GPU-based method
and the CPU-based method processed the same number
of optimization steps for our experimental datasets. How-
ever, the GPU can yield different numerical results as
those produced by the CPU, because they have different
instruction sets, and GPU architectures are not fully
IEEE-754 compliant [42] in terms of rounding errors
[10]. In addition, our method utilizes texture-based inter-
polation, which employs a lower precision format. These
architectural differences can cause different numbers of
optimization steps.

To evaluate the registration accuracy, we compared the
deformation vector fields of our GPU-based method and
the CPU-based method. Compared with CPU results, the
maximum errors of deformation vectors were 0.52, 0.41,
0.37, and 0.38 voxels for datasets #1–#4, respectively.
These maximum errors were less than the image resolu-
tion γ = 0.67 at the finest level. Thus, the GPU produced
nearly same deformation fields as those obtained on the
CPU.

Figure 10(c) illustrates an error distribution for dataset
#1. Although the maximum deformations were approxi-
mately equal between GPU and CPU results, large errors
were mainly observed in low-contrast areas. Voxels in
such areas have nearly equal values. Consequently, these
large errors cannot be clearly seen as differences of
voxel values, as shown in the differential image of Fig.
10(d). Because many medical image processing projects
such as 3D Slicer [43] and the Insight Segmentation
and Registration Toolkit (ITK) [44] adopt the CPU-based
method for image-guided procedures, we think that our
GPU-based method is also acceptable for such practical
situations.

IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. XX, NO. XX, XX 2014 12

(a) (b) (c) (d)

Fig. 10. Error distribution of dataset #1: (a) reference image, (b) aligned floating image, (c) original floating image with error distribution,
and (d) differential image between GPU- and CPU-based aligned images. An error is associated with the source of a deformation vector
(i.e., a voxel in the original floating image). Smaller errors are blue and larger errors are red.

The source of these errors mainly exists in hardware-
accelerated interpolation. Although this capability is at-
tractive in terms of performance, it uses a 9-bit fixed
point format [10] to represent the weights of trilinear
interpolation. In contrast, the CPU-based method uses a
32-bit floating point representation. For interpolation of
similar values, in terms of accuracy, the floating point
representation is superior to the fixed point representa-
tion.

Figure 11 shows how NMI values increased during
optimization. As shown in this figure, in the earlier com-
putational phase, the initial deformation level finished
rapidly. This coarsest level, in which global memory is
used to compute histograms, occupies only 5.5% of the
total computation time. Therefore, our switching strat-
egy efficiently accelerates the optimization procedure in
succeeding levels and shows effective integration with a
multiresolution approach.

Our method cannot be activated if the deformation
of two images is considerably large, because nonempty
bins can exist outside a parallelogram area. However,
our method was activated at higher resolution levels,
which dominate execution time, as shown in Fig. 11.
This indicates that the initial large deformations can be
reduced at a low resolution level. For datasets #1–#4,
the maximum deformations after the first deformation
level were 6.7, 4.4, 4.1, and 6.5 mm, respectively. Conse-
quently, our method will reduce execution time provided
that the maximum length of deformations reduces at
every optimization step.

D. Multimodal Image Registration

We applied our method to multimodal registration of
the brain. We used CT, T1-, T2-, and PD-weighted MR
images to deal with four registration cases: (1) CT and
T1-weighted images (Fig. 12), (2) T1- and T2-weighted
images (Fig. 13), (3) CT and T2-weighted images (Fig.

1.14

1.15

1.16

1.17

1.18

1.19

1.2

1.21

1.22

1.23

1.24

0 5 10 15 20 25 30

N
or

m
al

iz
ed

 m
ut

ua
l i

nf
or

m
at

io
n

Elapsed time (s)

Dataset #1
Dataset #2
Dataset #3
Dataset #4h = 1

h = 2
h = 3

Fig. 11. Optimization progress on the GPU. A plot corresponds to
an optimization step. NMI values increase with the deformation level
h.

TABLE V
PARAMETER VALUES USED FOR MULTIMODAL REGISTRATION.

Level h X × Y × Z (voxel) γ (mm) δ (mm) ε W (bin)
1 64 × 64 × 25 5.23 20.92 0.001 177
2 128 × 128 × 49 2.61 10.46 0.001 177
3 256 × 256 × 98 1.31 5.23 0.001 177

14), and (4) CT and PD-weighted images (Fig. 15) for
reference and floating images, respectively. The data
were obtained from the Vanderbilt database [45]. Table
V shows the parameter values used for the experiments.

In order to use shared memory for joint histogram
computation, we first applied a modality transformation
technique [38] to the floating image. This transformation
allows the transformed floating image to have the same
representation as the reference image. Consequently,
non-empty bins appear around the diagonal of the joint
histogram of the reference and transformed floating
images. Thus, our method used shared memory in all
deformation levels.

With respect to the first and second cases (Figs. 12 and
13), we found that our method produced aligned images
within 1.31 and 0.38 seconds for the first and second

IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. XX, NO. XX, XX 2014 13

(a) (b) (c) (d) (e)

Fig. 12. Successful examples of multimodal registration results: (a) reference CT image and floating T1-weighted MR image (b) before
and (c) after registration. Checkerboard visualization (d) before and (e) after registration.

(a) (b) (c) (d) (e)

Fig. 13. Successful examples of multimodal registration results: (a) reference T1-weighted MR image and floating T2-weighted MR image
(b) before and (c) after registration. Checkerboard visualization (d) before and (e) after registration.

(a) (b) (c) (d) (e)

Fig. 14. Failed examples of multimodal registration results: (a) reference CT image and floating T2-weighted MR image (b) before and
(c) after registration. Checkerboard visualization (d) before and (e) after registration.

cases, respectively. These timing results are 6.4 and 5.9
times faster than a naive method (version 2 in Table IV)
that uses off-chip memory instead of shared memory.
The maximum lengths of deformations after registration
were 16.7 and 5.3 mm for the first and second cases,
respectively.

In contrast to the successful results mentioned above,
our method failed to produce aligned images for the
third and fourth cases, which deal with multimodal
images that have not coarse similarity in terms of in-
tensity values. However, we found that our GPU-based
method successfully solved the third case if the modality
transformation technique was not applied to the floating
image. In this case, our shared memory version was
not activated during registration. This result implies that
modality transformation can cause a bias issue, which

may lead registration process to fail, though the transfor-
mation is useful to achieve significant acceleration over
the off-chip memory version.

On the other hand, both the CPU- and GPU-based
methods failed to solve the fourth case. This failure is
due to the basic registration algorithm (i.e., a combina-
tion of NMI, B-spline deformation, and steepest descent
optimization).

VI. CONCLUSIONS

We presented a CUDA implementation of a highly
efficient method for accelerating NMI-based nonrigid
registration. Our method reduces the data size of joint
histograms so they can be stored in shared memory for
fast NMI computation. An efficient merge mechanism
is integrated into our kernel to minimize the amount of

IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. XX, NO. XX, XX 2014 14

(a) (b) (c) (d) (e)

Fig. 15. Failed examples of multimodal registration results: (a) reference CT image and floating PD-weighted MR image (b) before and
(c) after registration. Checkerboard visualization (d) before and (e) after registration.

off-chip memory access for fast joint histogram compu-
tation. Furthermore, our method achieves rapid B-spline
deformation by performing data reuse on shared memory.

We experimentally evaluated our method using four
datasets of liver CT images consisting of 512×512×296
voxels. Our alignment procedure completed within a
few tens of seconds, which is five times faster than
previous GPU-based methods and 14 times faster than
a multithreaded CPU-based method. The efficiencies of
our method reach 88% and 46% in gradient and similar-
ity computation, respectively. We also demonstrated the
impact and limitation of our method for multimodal reg-
istration of the brain. Thus, our method demonstrates the
effectiveness of using shared memory by realizing rapid
nonrigid registration for time-demanding situations.

We think that our method is useful to increase the
efficiency of parallel registration on future GPU archi-
tectures, because our hierarchical joint histogram organi-
zation reduces the amount of resource consumption per
thread block. Consumption of fewer resource not only
allows registration tasks to be accelerated on a tablet
device equipped with a next generation mobile GPU such
as the Tegra K1, but also increases the number of active
threads [10] on a highly-threaded GPU architecture.
Thus, our method will process multiple thread blocks
simultaneously on a future GPU that has more than 48
KB of shared memory. Such active thread blocks are
useful to overlap a memory fetch instruction with a data-
independent arithmetic instruction.

ACKNOWLEDGEMENT

This study was partly supported by the JSPS KAK-
ENHI Grant Number 23300007, 23700057, the JST
CREST program, “An Evolutionary Approach to Con-
struction of a Software Development Environment for
Massively-Parallel Computing Systems,” and the MEXT
project, “Creating Hybrid Organs of the future” at Osaka
University. The authors would like to thank the anony-
mous reviewers for helpful comments to improve their

paper.

REFERENCES

[1] J. V. Hajnal, D. L. Hill, and D. J. Hawkes, Eds., Medical Image
Registration. Boca Raton, FL: CRC Press, 2001.

[2] T. Rohlfing and C. R. Maurer, “Nonrigid image registration in
shared-memory multiprocessor environments with application
to brains, breasts, and bees,” IEEE Trans. Information Technol-
ogy in Biomedicine, vol. 7, no. 1, pp. 16–25, Mar. 2003.

[3] S. Oguro, J. Tokuda, H. Elhawary, S. Haker, R. Kikinis, C. M.
Tempany, and N. Hata, “MRI signal intensity based B-Spline
nonrigid registration for pre- and intraoperative imaging dur-
ing prostate brachytherapy,” J. Magnetic Resonance Imaging,
vol. 30, no. 5, pp. 1052–1058, Oct. 2009.

[4] F. A. Jolesz, “Image-guided procedures and the operating room
of the future,” Radiology, vol. 204, no. 3, pp. 601–612, Sep.
1997.

[5] O. Clatz, H. Delingette, I.-F. Talos, A. J. Golby, R. Kikinis,
F. A. Jolesz, N. Ayache, and S. K. Warfield, “Robust nonrigid
registration to capture brain shift from intraoperative MRI,”
IEEE Trans. Medical Imaging, vol. 24, no. 11, pp. 1417–1427,
Nov. 2005.

[6] N. Chrisochoides, A. Fedorov, A. Kot, N. Archip, P. Black,
O. Clatz, A. Golby, R. Kikinis, and S. K. Warfield, “Toward
real-time image guided neurosurgery using distributed and grid
computing,” in Proc. Int’l Conf. High Performance Computing,
Networking, Storage and Analysis (SC’06), Nov. 2006, 13 pages
(CD-ROM).

[7] H. Elhawary, S. Oguro, K. Tuncali, P. R. Morrison, S. Tatli, P. B.
Shyn, S. G. Silverman, and N. Hata, “Multimodality non-rigid
image registration for planning, targeting and monitoring during
CT-guided percutaneous liver tumor cryoablation,” Academic
Radiology, vol. 17, no. 11, pp. 1334–1344, Nov. 2010.

[8] D. Rueckert, L. I. Sonoda, C. Hayes, D. L. G. Hill, M. O.
Leach, and D. J. Hawkes, “Nonrigid registration using free-form
deformations: Application to breast MR images,” IEEE Trans.
Medical Imaging, vol. 18, no. 8, pp. 712–721, Aug. 1999.

[9] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym,
“NVIDIA Tesla: A unified graphics and computing architec-
ture,” IEEE Micro, vol. 28, no. 2, pp. 39–55, Mar. 2008.

[10] NVIDIA Corporation, “CUDA Programming Guide Version
4.2,” Apr. 2012. [Online]. Available: http://developer.nvidia.
com/cuda/

[11] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone,
and J. C. Phillips, “GPU computing,” Proceedings of the IEEE,
vol. 96, no. 5, pp. 879–899, May 2008.

[12] Y. Okitsu, F. Ino, and K. Hagihara, “High-performance cone
beam reconstruction using CUDA compatible GPUs,” Parallel
Computing, vol. 36, no. 2/3, pp. 129–141, Feb. 2010.

IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. XX, NO. XX, XX 2014 15

[13] F. Ino, Y. Munekawa, and K. Hagihara, “Sequence homology
search using fine grained cycle sharing of idle GPUs,” IEEE
Trans. Parallel and Distributed Systems, vol. 23, no. 4, pp. 751–
759, Apr. 2012.

[14] W. Plishker, O. Dandekar, S. S. Bhattacharyya, and R. Shekhar,
“Towards systematic exploration of tradeoffs for medical image
registration on heterogeneous platforms,” in Proc. IEEE Biome-
dial Circuits and Systems Conf. (BioCAS’08), Nov. 2008, pp.
53–56.

[15] ——, “Utilizing hierarchical multiprocessing for medical image
registration,” IEEE Signal Processing Magazine, vol. 27, no. 2,
pp. 61–68, Mar. 2010.

[16] S. Lee, G. Wolberg, and S. Y. Shin, “Scattered data interpola-
tion with multilevel B-splines,” IEEE Trans. Visualization and
Computer Graphics, vol. 3, no. 3, pp. 228–244, Jul. 1997.

[17] C. Studholme, D. L. G. Hill, and D. J. Hawkes, “An overlap
invariant entropy measure of 3D medical image alignment,”
Pattern Recognition, vol. 32, no. 1, pp. 71–86, Jan. 1999.

[18] V. Saxena, J. Rohrer, and L. Gong, “A parallel GPU algorithm
for mutual information based 3D nonrigid image registration,”
in Proc. 16th European Conf. Parallel Computing (Euro-
Par’10), Part II, Sep. 2010, pp. 223–234.

[19] M. Modat, G. R. Ridgway, Z. A. Taylor, M. Lehmann,
J. Barnes, D. J. Hawkes, N. C. Fox, and S. Ourselin,
“Fast free-form deformation using graphics processing units,”
Computer Methods and Programs in Biomedicine, vol. 98,
no. 3, pp. 278–284, Jun. 2010. [Online]. Available: http:
//sourceforge.net/projects/niftyreg/

[20] S. Chen, J. Qin, Y. Xie, W.-M. Pang, and P.-A. Heng, “CUDA-
based acceleration and algorithm refinement for volume image
registration,” in Proc. 8th IEEE Int’l Conf. Future BioMedical
Information Engineering (FBIE’09), Dec. 2009, pp. 544–547.

[21] R. Shams, P. Sadeghi, R. Kennedy, and R. Hartley, “Parallel
computation of mutual information on the GPU with application
to real-time registration of 3D medical images,” Computer
Methods and Programs in Biomedicine, vol. 99, no. 2, pp. 133–
146, Aug. 2010.

[22] R. Shams, P. Sadeghi, R. A. Kennedy, and R. I. Hartley, “A
survey of medical image registration on multicore and the
GPU,” IEEE Signal Processing Magazine, vol. 27, no. 2, pp.
50–60, Mar. 2010.

[23] X. Han, L. S. Hibbard, and V. Willcut, “GPU-accelerated,
gradient-free MI deformable registration for atlas-based MR
brain image segmentation,” in Proc. IEEE Computer Society
Conf. Computer Vision and Pattern Recognition Workshops
(CVPRW’09), Jun. 2009, 6 pages (CD-ROM).

[24] C. Vetter and R. Westermann, “Optimized GPU histograms
for multi-modal registration,” in Proc. 8th IEEE Int’l Symp.
Biomedical Imaging (ISBI’11), Apr. 2011, pp. 1227–1230.

[25] Y. Lou, X. Jia, X. Gu, and A. Tannenbaum, “A GPU-based
implementation of multimodal deformable image registration
based on mutual information or Bhattacharyya distance,” May
2011. [Online]. Available: http://hdl.handle.net/10380/3268/

[26] R. Shams and R. A. Kennedy, “Efficient histogram algorithms
for NVIDIA CUDA compatible devices,” in Proc. Int’l Conf.
Signal Processing and Communications Systems (ICSPCS’07),
Dec. 2007, pp. 418–422. [Online]. Available: http://users.cecs.
anu.edu.au/∼ramtin/cuda.htm

[27] W.-H. Cheng and C.-C. Lu, “Acceleration of medical image
registration using graphics process units in computing normal-
ized mutual information,” in Proc. 5th Int’l Conf. Image and
Graphics (ICIG’09), Sep. 2009, pp. 814–818.

[28] S. S. Samant, J. Xia, P. Muyan-Özçelik, and J. D. Owens,
“High performance computing for deformable image regis-
tration: Towards a new paradigm in adaptive radiotherapy,”
Medical Physics, vol. 35, no. 8, pp. 3546–3553, Aug. 2008.

[29] A. Ruiz, M. Ujaldon, L. Cooper, and K. Huang, “Non-rigid
registration for large sets of microscopic images on graphics
processors,” J. Signal Processing Systems, vol. 55, no. 1-3, pp.
229–250, Apr. 2009.

[30] Y. Liu, A. Fedorov, R. Kikinis, and N. Chirsochoides, “Non-
rigid registration for brain MRI: faster and cheaper,” Int’l J.
Functional Informatics and Personalised Medicine, vol. 3, no. 1,
pp. 48–57, May 2010.

[31] M. P. Wachowiak and T. M. Peters, “High-performance medical
image registration using new optimization techniques,” IEEE
Trans. Information Technology in Biomedicine, vol. 10, no. 2,
pp. 344–353, Apr. 2006.

[32] F. Ino, K. Ooyama, and K. Hagihara, “A data distributed parallel
algorithm for nonrigid image registration,” Parallel Computing,
vol. 31, no. 1, pp. 19–43, Jan. 2005.

[33] C. R. Castro-Pareja, J. M. Jagadeesh, and R. Shekhar, “FAIR:
A hardware architecture for real-time 3-D image registration,”
IEEE Trans. Information Technology in Biomedicine, vol. 7,
no. 4, pp. 426–434, Dec. 2003.

[34] O. Dandekar and R. Shekhar, “FPGA-accelerated deformable
image registration for improved target-delineation during CT-
guided interventions,” IEEE Trans. Biomedical Circuits and
Systems, vol. 1, no. 2, pp. 116–127, Jun. 2007.

[35] J. Rohrer and L. Gong, “Accelerating 3D nonrigid registration
using the Cell Broadband Engine processor,” IBM J. Research
and Development, vol. 53, no. 5, pp. 768–777, Sep. 2009.

[36] C. Studholme, R. T. Constable, and J. S. Duncan, “Accurate
alignment of functional EPI data to anatomical MRI using a
physics-based distortion model,” IEEE Trans. Medical Imaging,
vol. 19, no. 11, pp. 1115–1127, Nov. 2000.

[37] M. Harris, “Optimizing parallel reduction in CUDA,”
Nov. 2007, http://developer.download.nvidia.com/assets/cuda/
files/reduction.pdf.

[38] D.-J. Kroon and C. H. Slump, “MRI modality transformation in
demon registration,” in Proc. 6th IEEE Int’l Symp. Biomedical
Imaging (ISBI’09), Jun. 2009, pp. 963–966.

[39] M. Khader and A. B. Hamza, “An information-theoretic method
for multimodality medical image registration,” Expert Systems
with Applications, vol. 39, no. 5, pp. 5548–5556, Apr. 2012.

[40] R. Chandra, L. Dagum, D. Kohr, D. Maydan, J. McDonald, and
R. Menon, Parallel Programming in OpenMP. San Mateo, CA:
Morgan Kaufmann, Oct. 2000.

[41] J. Masumoto, Y. Sato, M. Hori, T. Murakami, T. Johkoh,
H. Nakamura, and S. Tamura, “A similarity measure for non-
rigid volume registration using known joint distribution of
targeted tissue: Application to dynamic CT data of the liver,”
Medical Image Analysis, vol. 7, no. 4, pp. 553–564, Dec. 2003.

[42] D. Stevenson, “A proposed standard for binary floating-point
arithmetic,” IEEE Computer, vol. 14, no. 3, pp. 51–62, Mar.
1981.

[43] S. Pieper, M. Halle, and R. Kikinis, “3D slicer,” in Proc. 1st
IEEE Int’l Symp. Biomedical Imaging (ISBI’04), Apr. 2004,
pp. 632–635. [Online]. Available: http://www.slicer.org/

[44] T. S. Yoo and D. N. Metaxas, “Open science — combining
open data and open source software: Medical image analysis
with the insight toolkit,” Medical Image Analysis, vol. 9, no. 6,
pp. 503–506, Dec. 2005.

[45] J. M. Fitzpatrick, “The retrospective image registration
evaluation project,” 2008. [Online]. Available: http://www.
insight-journal.org/rire/

IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. XX, NO. XX, XX 2014 16

Kei Ikeda received the M.E. degree in in-
formation and computer sciences from Osaka
University, Osaka, Japan, in 2012. He is cur-
rently working toward the Ph.D. degree at Os-
aka University. His current research interests
include high performance computing, medi-
cal image processing, and computer assisted
surgery.

Fumihiko Ino (S’01–A’03–M’04) received the
B.E., M.E., and Ph.D. degrees in information
and computer sciences from Osaka University,
Osaka, Japan, in 1998, 2000, and 2004, re-
spectively. He is currently an Associate Pro-
fessor in the Graduate School of Information
Science and Technology at Osaka University.
His research interests include parallel and dis-
tributed systems, software development tools,

and performance evaluation.

Kenichi Hagihara received the B.E., M.E.,
and Ph.D. degrees in information and com-
puter sciences from Osaka University, Osaka,
Japan, in 1974, 1976, and 1979, respectively.
From 1994 to 2002, he was a Professor in
the Department of Informatics and Mathemat-
ical Science, Graduate School of Engineering
Science, Osaka University. Since 2002, he
has been a Professor in the Department of

Computer Science, Graduate School of Information Science and
Technology, Osaka University. From 1992 to 1993, he was a Visiting
Researcher at the University of Maryland. His research interests
include the fundamentals and practical application of parallel pro-
cessing.

