
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2013; 24:1–15 Prepared using cpeauth.cls [Version: 2002/09/19
v2.02]

A Parallel Scheme for
Accelerating Parameter
Sweep Applications on a
GPU

Fumihiko Ino1,∗,†, Kentaro Shigeoka1, Tomohiro
Okuyama1, Masaya Motokubota2 and Kenichi
Hagihara1

1Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka,
Suita, Osaka 565-0871, Japan
2Corporate Manufacturing Engineering Center, Toshiba Corporation, 33 Shin-Isogo-Cho,
Isogo-ku, Yokohama, Kanagawa 235-0017, Japan

SUMMARY

This paper proposes a parallel scheme for accelerating parameter sweep applications on
a graphics processing unit (GPU). Using hundreds of cores on the GPU, our scheme
simultaneously processes multiple parameters rather than a single parameter. The
simultaneous sweeps exploit the similarity of computing behaviors shared by different
parameters, thus allowing memory accesses to be coalesced into a single access if
similar irregularities appear among the parameters’ computational tasks. In addition,
our scheme reduces the amount of off-chip memory access by unifying the data that
are commonly referenced by multiple parameters and by placing the unified data in
the fast on-chip memory. In several experiments, we applied our scheme to practical
applications, and found that our scheme can perform up to 8.5 times faster than a naive
scheme that processes a single parameter at a time. We also include a discussion on
application characteristics that are required for our scheme to outperform the naive
scheme. Copyright c© 2013 John Wiley & Sons, Ltd.

key words: parameter sweep; acceleration; GPU; CUDA

∗Correspondence to: Fumihiko Ino, Graduate School of Information Science and Technology, Osaka University,
1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
†E-mail: ino@ist.osaka-u.ac.jp

Received 14 September 2012
Copyright c© 2013 John Wiley & Sons, Ltd. Revised 12 February 2013

2 F. INO

1. INTRODUCTION
Parameter sweep (PS) is a well-known strategy for solving combinatorial optimization
problems. PS applications typically process the same sequence of operations with different
parameters in order to find the best solution in parametric space. Because the number of
combinations is usually large in practical situations, PS applications have been accelerated
using high-performance computing (HPC) systems. In such systems, computational grids
typically exploit the coarse-grained parallelism inherent in PS computation [1, 2]. As different
parameters do not have data dependencies between their operations, PS applications can be
efficiently parallelized by a master-worker paradigm where the master node assigns a set of
parameters to idle worker nodes in a round-robin fashion.

Another key HPC platform is the GPU [3], for which NVIDIA designed a programming
framework called compute unified device architecture (CUDA) [4]. Using this flexible
framework, the GPU can serve as a powerful accelerator for not only graphics applications
but also general purpose applications that require a significant memory bandwidth to perform
arithmetic intensive operations. The GPU accelerator exploits fine-grained parallelism with
millions of threads, achieving a typical speedup that is ten times faster than CPU-based
implementations [5].

Consequently, many grid computing systems [6, 7] utilize the GPU as a computational
engine to attain greater acceleration. For example, the Folding@home project [6] accelerates
simulations of protein folding and other molecular dynamics using more than 20,000 GPUs.
On each GPU, millions of threads exploit fine-grained data parallelism in single-parameter
computations. Owing to this highly parallel computation, GPU-equipped nodes provide 70%
of the system throughput although they account for only 10% of all available nodes in the
system. Thus, the GPU increases its contribution to the grid system performance. This trend
inspired us to develop an efficient parallel scheme for PS applications running on a GPU.

In this paper, we present a parallel scheme for accelerating PS applications on a CUDA-
compatible GPU. Similar to the previously mentioned fine-grained scheme, which we will
call the naive scheme, our scheme focuses on the data parallelism in PS computations. The
key difference from the naive scheme is that our scheme simultaneously processes multiple
parameters rather than a single parameter. This task organization strategy allows the GPU
to exploit similar computing behaviors among the parameters. For instance, irregular data
accesses for a single parameter can be efficiently mapped onto the GPU if they are transformed
into regular data accesses for multiple parameters. In addition, our scheme saves the off-chip
memory bandwidth by unifying the data commonly referenced by the multiple parameters and
by using on-chip memory for the unified data. We extend our preliminary results [8] with a
detailed case study and guidelines that are useful for selecting the appropriate scheme for a
target PS application.

The remainder of this paper is organized as follows. Section 2 discusses related work. Section
3 presents preliminaries, including the naive scheme that maps PS applications onto the CUDA-
compatible GPU. Section 4 describes our parallel scheme along with guidelines for selecting
a scheme, and Section 5 presents our experimental results. Finally, Section 6 presents our
conclusions.

Copyright c© 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 24:1–15
Prepared using cpeauth.cls

ACCELERATING PARAMETER SWEEP APPLICATIONS ON A GPU 3

2. RELATED WORK

The GPU has been used to accelerate PS applications in various fields including chemistry
[6], physics [9], and bioinformatics [10]. Although these studies have achieved significant
acceleration compared with CPU-based implementations, their parallel schemes are specific to
the target problems they tackle. On the other hand, our study focuses on developing a general
scheme for GPU-accelerated PS applications and clarifying the key application characteristics
required for achieving acceleration with our proposed scheme.

Several previous studies have proposed optimization strategies for CUDA-based applications.
Meng et al. [11] introduced an optimization technique called dynamic warp subdivision, which
allows threads to interleave the computations of paths along different branches in order to hide
memory latency. Zhang et al. [12] presented runtime optimizations that can eliminate thread
divergence with a CPU-GPU pipelining scheme. They subsequently enhanced their scheme’s
performance by eliminating dynamic irregularities in memory references and control flows [13].
Che et al. [14] proposed a simple application program interface (API) that optimizes memory
efficiency on the basis of some hints about memory access patterns. Although all these previous
studies are effective for irregular applications, their optimization strategies focus on a single
fixed task. In contrast, our scheme organizes multiple tasks so that the threads can eliminate
irregular behaviors. To the best of our knowledge, our study is the first that tackles the issue
of irregular memory references by an appropriate organization of computational tasks.

There are many projects that support parametric studies on CPU-based systems. For
example, Condor [15] presented one of the first grid middleware systems to focus on idle
machines for accelerating scientific applications. It provides a software framework [16] that
allows users to easily parallelize applications on the grid using the master-worker paradigm.
Nimrod/G [17] is a grid middleware that supports executing large-scale distributed PS.
This system is equipped with a computational economic framework [18] for regulating
supply and demand in order to address complex resource management issues. The AppLeS
parameter sweep template [19] is another grid middleware system designed to efficiently and
adaptively use computational resources managed by multiple grid environments. Our scheme
can be integrated into these systems because there is no overlap between their CPU-related
accomplishments and our GPU-related contribution.

3. PARAMETER SWEEP WITH CUDA

Suppose that a PS application has n parameters to be swept. We assume that each parameter
involves a task to be processed. Let Ti (1 ≤ i ≤ n) denote the task associated with parameter
Pi, and let Ii and Oi (1 ≤ i ≤ n) be the sets of input data and output data, respectively, for
parameter Pi. To simplify our presentation, we assume that all the sets Ii and Oi (1 ≤ i ≤ n)
have the same number m of elements. The i-th input and output datasets can then be denoted
as

Ii = { ei,j | 1 ≤ j ≤ m }, (1)
Oi = { fi,j | 1 ≤ j ≤ m }, (2)

Copyright c© 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 24:1–15
Prepared using cpeauth.cls

4 F. INO

Time

Kernel

Input Output

Kernel

Input Output

Kernel

Input Output

… … …

(a)

Time

Kernel

V inputs V outputs

Kernel

V inputs V outputs

Kernel

V inputs V outputs

… … …

(b)

Figure 1. Parallel schemes for PS applications. (a) In the naive scheme, threads process a single
parameter. (b) In our scheme, threads process multiple parameters. V denotes the number of

parameters simultaneously handled by each SIMT unit. In this example, V = 3.

where ei,j and fi,j represent the j-th elements of the i-th input and output sets, respectively.
In the case of an image processing application, Ii and Oi correspond to the input and
output images, respectively, while ei,j and fi,j correspond to the pixels in the images. Using
the previous notation, the subset C of the input data that are commonly referenced by all
parameters can be identified as

C =
∩

1≤i≤n

Ii. (3)

Given the data independence mentioned in Section 1, the master-worker paradigm can
exploit coarse-grained parallelism by assigning arbitrary tasks to the worker nodes. The
naive parallel scheme then attempts to accelerate single-parameter computation with single-
instruction multiple-thread (SIMT) units [4] on the GPU (Fig. 1(a)). In this scheme, the
worker nodes send the input data Ii from the main memory to the video memory, launch
kernel functions [4] to process the corresponding task Ti on the GPU, and then send the output
data Oi back to the main memory. These three processing steps are iteratively processed for
i = 1, 2, . . . , n.

It is possible to achieve efficient acceleration of the kernel functions’ performance through
the following three design components:

1. Hiding off-chip memory latency by coalescing memory accesses,
2. Reducing off-chip memory access by small on-chip memory, and
3. Running more resident threads [4] on the GPU by saving per-thread resource

consumption.

The first design component serves to increase the effective bandwidth of the off-chip memory.
The GPU is equipped with a memory coalescing technique for off-chip memory access so

Copyright c© 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 24:1–15
Prepared using cpeauth.cls

ACCELERATING PARAMETER SWEEP APPLICATIONS ON A GPU 5

that multiple transactions can be coalesced into a single transaction if the memory access
patterns satisfy certain conditions [4] that depend on the compute capability of the underlying
architecture. Currently available architecture can accomplish perfect coalescing if the following
two conditions are satisfied: (1) a series of 32 threads (i.e., a warp [4]) accesses a contiguous
region of memory and (2) the initial address to be accessed is aligned to the memory boundary.

The second design component saves the off-chip memory bandwidth, which is essential
because the memory bandwidth rather than arithmetic performance usually determines the
efficiency of kernel execution. This can be clearly seen on recent architectures, which have a
low byte per floating point operation (Byte/Flop) ratio. To make matters worse, the latency
of the off-chip memory is hundred times longer than the latency of the on-chip memory [4].
Off-chip memory access can be reduced by having threads belonging to the same group (the
same thread block [4]) reuse data, because such threads are allowed to exchange data through
the on-chip memory (called shared memory). However, the shared memory is on the order of
KBs, while the off-chip memory is on the order of GBs. Tiling techniques [20] can be used to
compensate for this difference in capacity by partitioning data into multiple small tiles, thus
allowing data reuse in the shared memory.

Finally, the third design component is useful for hiding memory access latency with data-
independent computations. Saving per-thread resource consumption allows more resident
threads on the GPU, given that each thread consumes GPU resources such as register files
and shared memory. Increasing the number of resident threads provides a warp scheduler with
more computation-ready threads, thus facilitating warp switching for overlapping execution.
The CUDA Occupancy Calculator [4] can examine the degree of resource consumption and
calculate the occupancy of a kernel function, which is the ratio of the actual number of resident
warps to the maximum number possible.

4. OUR PROPOSED PARALLEL SCHEME

To efficiently map PS applications onto the GPU, we focus on two characteristics of PS
computation: all parameters P1, P2, . . . , Pn (1) involve the same series of operations and
(2) access a common subset C of input data. Based on characteristic (1), our scheme
exploits the SIMT units on the GPU by concurrently processing a series of multiple tasks
Ti, Ti+1, . . . , Ti+V −1, where V represents the number of parameters that can be simultaneously
handled by each SIMT unit (Fig. 1(b)). Currently, we set V to the warp size (so that V = 32),
because the warps simultaneously execute each SIMT instruction. Based on characteristic (2),
our scheme reduces the amount of memory consumption by combining the common data subset
C for the V tasks so that it can be stored in the shared memory.

Figure 2 shows an overview of our parallel scheme. Unlike the naive scheme, which handles
parameters one at a time, our scheme requires arranging the input and output data to enable
coalesced memory access for V parameters. Although this arrangement incurs overhead, a
stream processing technique [21] can be used to overlap the overhead with kernel execution
if the CPU is responsible for the data arrangement. Another difference between our proposed
scheme and the naive scheme is an increase in kernel execution time. Kernels running under
our proposed scheme can spend V times longer than kernels running under the naive scheme to

Copyright c© 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 24:1–15
Prepared using cpeauth.cls

6 F. INO

CPU

GPU
2. Input data

arrangement

Raw input Raw output

4. Output data

arrangement

1. Download

3. Kernel

execution

5. Readback

Interleaved input Interleaved outputRaw input
2

Raw output

Figure 2. Overview of our parallel scheme. Our scheme arranges data before and after kernel execution
so that data are stored in an interleaved manner. This data arrangement can be skipped for the

common data C.

complete their execution, because they process V parameters rather than a single parameter.
However, the total number of kernel launches is decreased by a factor of roughly V , and
therefore, the increased execution time is insignificant if the number of parameters to be swept
is large.

In the remainder of this section, we introduce our memory coalescing and data unification
techniques in order to explain how kernels can be written for our parallel scheme.

4.1. Memory Coalescing for Hiding Off-chip Memory Latency

As shown in Fig. 3, our key idea for acceleration is to arrange the input and output data Ii

and Oi so that separate memory transactions can be coalesced into a single transaction. We
believe that this arrangement can improve kernel performance when parameters with irregular
memory access patterns have similar access strides. Because the irregular access patterns
prohibit coalescing memory transactions within a single task, the naive scheme performs poorly.
Therefore, we propose that the SIMT nature of PS computations can be usefully exploited to
provide coalesced memory access for multiple parameters.

For the state-of-the-art architecture, memory coalescing can be achieved if the target
application satisfies the following two conditions:

1. Task assignment condition: threads in the same warp are responsible for V distinct tasks
Ti, Ti+1, . . . , Ti+V −1.

2. Data structure condition: input and output data for tasks Ti, Ti+1, . . . , Ti+V −1 are stored
in an interleaved manner.

To satisfy the first condition, we assign tasks to warps so that each warp is responsible for V
consecutive tasks Ti, Ti+1, . . . , Ti+V −1. Note that this condition cannot be achieved under the
naive scheme, which assigns a single task to warps. Similar to the naive scheme, our scheme
processes each task in parallel with thousands of warps.

In addition to the task assignment condition, the second condition must be satisfied for
memory coalescing. Suppose that task Ti accesses an input element ei,j (where 1 ≤ i ≤ n, 1 ≤
j ≤ m). Then the other tasks Ti+1, Ti+2, . . . , Ti+V −1 will probably access the input elements

Copyright c© 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 24:1–15
Prepared using cpeauth.cls

ACCELERATING PARAMETER SWEEP APPLICATIONS ON A GPU 7

i
T

1+i
T

2+i
T

(a)

Step 1

Step 2

Step 3

Coalesced

Coalesced

Coalesced

(b)

Figure 3. Data arrangement for memory coalescing. Each arrow represents a memory reference from a
thread to the array element denoted by a circle. (a) Each of the tasks Ti, Ti+1, and Ti+2 are degraded
by irregular memory accesses that cannot be coalesced into a single transaction. (b) After arranging
the data to be stored in an interleaved manner, each set of strided accesses can be coalesced into a

single access if the irregularities among tasks that are simultaneously processed are similar.

ei+1,j , ei+2,j , . . . , ei+V −1,j at the same relative address j, because PS applications apply the
same sequence of operations to different parameters (see Fig. 3(a)). Therefore, we arrange the
input and output data in an interleaved manner, as shown in Fig. 3(b). That is, we store the
elements ei,1, ei,2, . . . , ei,m in the sequence ei,j , ei+1,j , . . . , ei+V −1,j rather than in the original
order. This arrangement of data elements is intended to allow contiguous address spaces to be
accessed by different tasks during the same clock cycle.

Note that strided accesses are essential for interleaving the data elements, and thus, the data
arrangement can result in poor performance. However, similar to matrix transposition samples
in the CUDA software development kit (SDK) [22], the input/output data arrangement can
be efficiently implemented on the GPU by using the shared memory to avoid strided accesses
to the off-chip memory. Figure 4 shows our arrangement code, which assumes that arrays for
V tasks are contiguously stored from the src pointer and each array consists of size elements.
The arrangement function arrangement() calls the transposition kernel transpose(), which
generates a transposed matrix of V × size elements. Each thread block uses a shared buffer
of V × (V+1) elements to transpose the input matrix of size × V elements.

Note also that the common data C do not require this arrangement. All tasks share the same
memory region for the common data through the data unification technique presented below.
Consequently, it is not necessary to arrange any input data if ∀1 ≤ i ≤ n, Ii = C.

Given the naive code with at most two-dimensional (2-D) thread blocks, our proposed task
assignment can be achieved by thread block extension, which increases the dimension of the
thread blocks. For example, 2-D thread blocks of size X × Y can be extended to 3-D thread
blocks of size V ×X ×Y to allow each warp to process a series of V tasks. If the thread blocks
of the naive code have 3-D indexes, which is the maximum permissible dimension in CUDA,
we must reduce the dimension of the indexes before applying our technique. This reduction

Copyright c© 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 24:1–15
Prepared using cpeauth.cls

8 F. INO

1 #define V 32 // Number of tasks processed simultaneously

2

3 template <class T>

4 __global__ void transpose(T *dst, T *src, int size)

5 {

6 __shared__ T buf_s[V][V + 1]; // Padding avoids bank conflicts

7

8 // read the matrix tile into shared memory

9 int x = blockIdx.x * blockDim.x + threadIdx.x;

10 int y = threadIdx.y;

11 if (x < size)

12 {

13 buf_s[threadIdx.x][threadIdx.y] = src[y * size + x];

14 }

15 __syncthreads();

16

17 // write the transposed matrix tile to global memory

18 x = threadIdx.x;

19 y = blockIdx.x * blockDim.x + threadIdx.y;

20 if (y < size)

21 {

22 dst[y * V + x] = buf_s[threadIdx.y][threadIdx.x];

23 }

24 }

25

26 template <class T>

27 void arrangement(T *dst, T *src, int size)

28 {

29 dim3 grid(size / V);

30 dim3 block(V, V);

31

32 transpose <T><<<grid , block >>>(dst , src , size);

33 }

Figure 4. A partial code of data arrangement. This code is based on a tile-based algorithm that
transposes a matrix of size × V elements into that of V × size elements.

can be accomplished with 3-D to 2-D index translation, which maps the 3-D thread blocks to
2-D thread blocks. We note that the maximum size of the thread blocks (i.e., the maximum
number of threads in a thread block) is limited by the underlying architecture. If the size
of the translated thread blocks exceeds this maximum size, we have to reduce the number
of threads per task in order to adapt the thread block organization to the limitations of the
architecture. This reduction can be accomplished by thread block decomposition if the threads
do not share data dependencies. Otherwise, if the threads are interdependent, the reduction

Copyright c© 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 24:1–15
Prepared using cpeauth.cls

ACCELERATING PARAMETER SWEEP APPLICATIONS ON A GPU 9

can be achieved by thread aggregation, which assigns a larger workload to each thread. Thread
aggregation can also be used to adjust the number of thread blocks to the maximum permissible
number. However, this procedure must be carefully applied to the kernel code so that it does
not interfere with memory access coalescence.

4.2. Data Unification for Reducing Off-chip Memory Accesses

Because our scheme processes V parameters at a time, the common data C can be unified to
reduce the amount of memory consumption for V tasks. The data unification reduces not only
the size of the input data by (V − 1)|C| but also the number of off-chip memory accesses if the
common data set C is stored in the shared memory. The number of off-chip memory accesses
can be reduced by at least a factor of V because the threads in the same warp are allowed to
access 1/V amounts of data. In the best case scenario, our data unification technique further
saves the off-chip memory bandwidth. In this case, the common data C can be shared among
threads in the same thread block.

In our scheme, the threads in the same thread block first copy their data from the off-
chip memory to the shared memory. This copy operation must be performed cooperatively
to prevent redundant memory transactions. The threads can then perform their computations
using the shared memory rather than the off-chip memory. Finally, they must copy their results
back to the off-chip memory before the kernel completes execution.

4.3. Scheme Selection Guidelines

Our scheme has both strengths and weaknesses compared with the naive scheme. Consequently,
our scheme will not always run faster than the naive scheme. Because it is not easy to predict
the best scheme for an arbitrary application, we present guidelines to help developers choose
the scheme for their applications. Our guidelines are based on the three design components
presented in Section 3.

First, the effect of memory access coalescing depends on the memory access patterns inherent
in the target algorithm; therefore, it is necessary to examine the algorithm’s memory access
strides. Our scheme can realize coalesced access if the algorithm produces similar access
patterns (similar access strides) for V tasks. In contrast, the naive scheme can realize coalesced
access if the algorithm refers to contiguous memory locations for a single task. Thus, the
similarity and continuity of memory accesses determine the effectiveness of memory access
coalescing. If a target algorithm exhibits both similarity and continuity or if it exhibits neither,
the remaining design components must be investigated to select the better scheme. Note that
our concept of continuity differs slightly from that of locality insofar as it excludes situations
where there are intensive accesses to the same memory address. These situations require atomic
operations, which cannot be efficiently handled under either scheme.

Second, the number of off-chip memory accesses can be reduced by not only the shared
memory but also data unification. As we noted in Section 4.2, our data unification technique
allows a common set of data C to be reused by V tasks through the shared memory. In contrast,
the naive scheme uses the shared memory to perform data reuse within a single task. Because
our scheme processes V tasks at a time, each task is allowed to access 1/V of the memory

Copyright c© 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 24:1–15
Prepared using cpeauth.cls

10 F. INO

space for data reuse. Thus, assuming that the shared memory has a limited capacity, there is
a tradeoff between data reuse within a single task and data reuse among V tasks.

Third, our scheme can consume V times more memory space than the naive scheme owing to
the simultaneous execution of V tasks. Because the shared memory has a limited capacity, our
scheme can have fewer resident threads than the naive scheme, and consequently, our scheme’s
occupancy might be lower in certain cases. A similar issue concerns the possible exhaustion
of register files. Thus, our scheme may be disadvantageous in terms of resource consumption.
Possible solutions include reducing the number of threads or decomposing the kernel code
into smaller pieces so that each thread can run with limited resources. Obviously, our scheme
cannot be used directly if V tasks require memory space beyond the capacity of the off-chip
memory.

These three design components characterize the kernel’s performance. However, we also have
to consider the overhead for data arrangement because this overhead can be a pitfall in our
scheme. In particular, the overhead for arranging data must be analyzed for applications whose
memory accesses exhibit both similarity and continuity and for those with neither.

5. EXPERIMENTAL RESULTS
In this section, we present the results of our experimental evaluations of our scheme’s
performance. The experiments were performed on a Windows 7 machine that had an NVIDIA
GeForce GTX 580 card with 1.5 GB of off-chip memory with CUDA 4.2 [4] and driver version
301.32. The GPU card was attached through a peripheral component interconnect express
2.0 ×16 bus. The Windows machine had a 3.3 GHz Intel Core i7 2500K CPU and an 8
GB main memory. The reason why we selected a Windows machine is that it is the most
familiar computing system that can be utilized as a grid resource. We also think that GPUs
are primarily designed for PC games, which mainly run on Windows systems.

We applied our scheme to the practical applications described in Table I: a neural network
(NN) [23], an all-pairs shortest path (APSP) algorithm [24], a joint histogram (JH) [25], and
a Gaussian filter (GF) [22]. These applications were originally implemented using the naive
scheme, which processes a single parameter at a time. The application code was compiled using
the Visual Studio 2008 compiler at optimization level O2. Each application was executed 10
times in every experiment, and the average values were used.

Note that the naive version of GF used a thread block size of 32 × 8 rather than 16 × 8
in order to avoid bank conflicts [4] on the Fermi architecture [26], which has 32 banks in the
shared memory. Note also that a task in APSP corresponds to the computation of a single-
source shortest path in the given graph. Consequently, the APSP tasks require a single graph
as their common input, that is, ∀1 ≤ i ≤ n, Ii = C. This implies (as noted in Section 4.1)
that APSP does not require input data arrangement. In contrast, the remaining applications
do require input and output data arrangement. APSP processed 32K tasks and the remaining
applications processed 32 tasks during the performance measurement.

Copyright c© 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 24:1–15
Prepared using cpeauth.cls

ACCELERATING PARAMETER SWEEP APPLICATIONS ON A GPU 11

Table I. Description of experimental applications.

Application Similarity Continuity
Input/output

Description Parameter
arrangement

Neural
network
(NN) [23]

yes no yes/yes Implements an artificial NN for
recognition of handwritten digits.
A task corresponds to recognition
of a 29 × 29 pixel image of a digit.

32 images in
float format

All-pairs
shortest path
(APSP) [24]

yes no no/yes Computation of APSPs for a
weighted graph with 32K vertices.
A task computes a single-source
shortest path in the graph.

32K vertices
in integer for-
mat

Joint
histogram
(JH) [25]

no no yes/yes Computation of a joint histogram
for medical image registration. A
task corresponds to processing a
pair of 512×512×16 voxel volume
data.

32 floating
volume data
in unsigned
short format

Gaussian fil-
ter (GF) [22]

yes yes yes/yes A separable convolution filter of a
2-D image in the CUDA SDK. A
task filters an image of 1024×1024
pixels.

32 images in
float format

5.1. Code Modification

We first examined the application code to determine whether it exhibited similarity and/or
continuity of memory accesses. Using the results of the analysis presented in Table II, we then
modified the code so that it could process V = 32 tasks at a time. For all applications, we used
the same transposition function to perform data arrangement (see Fig. 4). All kernels except
SSSPKernel1 (for APSP) retained the same occupancy as the original kernels. Details of the
code modification are as follows.

NN implements an artificial NN and consists of four kernels, each corresponding to a single
layer of the artificial NN. Because the tasks share the same network, their weight coefficients
can be regarded as the common data C. All kernels were simply modified using the thread block
extension described in Section 4.1. However, because the size of the thread blocks reaches the
maximum permissible size in the FirstLayer kernel, we aggregated threads in order to reduce
the size of the thread blocks. As a result, the original 13 × 13 thread block size was changed
to 13 × 1 by thread aggregation and then to 32 × 13 × 1 by thread block extension.

As shown in Table II, APSP implements an iterative algorithm with two kernels. The inputs
to the first kernel are the common data C; therefore, we stored them in the shared memory.
The original 256 × 1 thread block size was changed to 4 × 1 by thread block decomposition
and then to 32 × 4 by thread block extension. Similarly, the second kernel used 64 × 4 as the
thread block size instead of the original 256 × 1 size. We chose 64 instead of 32 because the
thread block size 32× 4 causes partition camping in this kernel, which can degrade the kernel
performance by as much as sevenfold [27].

JH computes a joint histogram for a pair consisting of the reference and floating data.
The reference data are fixed whereas the floating data are changed during PS computation.
Consequently, the reference data can be regarded as the common data C and thus can be

Copyright c© 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 24:1–15
Prepared using cpeauth.cls

12 F. INO

Table II. Kernel code analysis. Data sizes are presented as per-parameter values so that they must be
multiplied by V = 32 for our scheme. The location column indicates the location where the original
code stores the corresponding variable. G, S, and C in this column stand for global memory, shared

memory, and constant memory.

App. Kernel Variable Classification Similarity Continuity Unified Size (B) Location

NN FirstLayer Layer1 Neurons I yes no no 3.6 K G
Layer1 Weights C yes yes yes 0.6 K G
Layer2 Neurons O yes yes no 4.0 K G

SecondLayer Layer2 Neurons I yes no no 4.0 K G
Layer2 Weights C yes yes yes 30.5 K G
Layer3 Neurons O yes yes no 4.9 K G

ThirdLayer Layer3 Neurons I yes no no 4.9 K G
Layer3 Weights C yes no yes 488.7 K G
Layer4 Neurons O yes no no 0.4 K G

ForthLayer Layer4 Neurons I yes no no 0.4 K G
Layer4 Weights C yes no yes 4.0 K G
Layer5 Neurons O yes no no 40.0 G

APSP SSSPKernel1 Va C yes yes yes 128 K G
Ea C yes no yes 512 K G
Wa C yes no yes 512 K G
Ma O yes yes no 128 K G
Ca O yes yes no 128 K G
Ua O yes no no 128 K G

SSSPKernel2 Ma I yes yes yes 128 K G
Ca I yes yes no 128 K G
Ua I yes yes no 128 K G
F O yes yes yes 4 G

JH Histogram fdat I yes yes no 8 M G
rdat C yes yes yes 8 M G
hist2d O no no no 256 K G

GF Rows d Dst I yes yes no 4 M G+S
c Kernel C yes yes yes 68 C
d Src O yes yes no 4 M G

Columns d Dst I yes yes no 4 M G+S
c Kernel C yes yes yes 68 C
d Src O yes yes no 4 M G

unified accordingly. The original 32 × 32 thread block size was changed to 32 × 1 by thread
block decomposition and then to 32 × 32 × 1 by thread block extension.

GF applies a separable convolution to a 2-D signal with a Gaussian function. This filter is
implemented by two kernels, one responsible for 1-D convolution in the row direction and the
other responsible for that in the column direction. Both kernels store Gaussian coefficients in
the constant memory that can be reused for the different tasks. The kernels are also accelerated
using a tiling technique, which allows the reuse of temporal data through the shared memory.
The 32× 8 thread block size was changed to 8× 1 by thread block decomposition and then to
32 × 8 × 1 by thread block extension.

Figure 5 shows a simplified version of the naive JH code and Fig. 6 shows the corresponding
part of our parallel JH code. By applying thread block decomposition to the naive code, the

Copyright c© 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 24:1–15
Prepared using cpeauth.cls

ACCELERATING PARAMETER SWEEP APPLICATIONS ON A GPU 13

1 #define BLOCK_XSIZE 32

2 #define BLOCK_YSIZE 32

3

4 __global__

5 void Histogram(short *rdat , short *fdat , dim3 size , int *hist2d)

6 {

7 // (x,y,*): responsible coordinates

8 int x = blockIdx.x * blockDim.x + threadIdx.x;

9 int y = blockIdx.y * blockDim.y + threadIdx.y;

10

11 int pos = size.x * y + x;

12 int base = 0;

13

14 for (int z=0; z<size.z; z++)

15 {

16 int f = fdat[base + pos];

17 int r = rdat[base + pos];

18 atomicAdd(&hist2d[WIDTH * f + r], 1); // histogram width

19 base += size.x * size.y;

20 }

21 }

22

23 void MakeHistogram(short *rdat , short *fdat , dim3 size , int *hist2d)

24 {

25 dim3 block(BLOCK_XSIZE , BLOCK_YSIZE);

26 dim3 grid(size.x / BLOCK_XSIZE , size.y / BLOCK_YSIZE);

27

28 Histogram <<<grid , block >>>(rdat , fdat , size , hist2d);

29 }

Figure 5. A simplified code of naive JH. A joint histogram hist2d is produced from a pair of
size.x×size.y×size.z voxel images rdat and fdat. Each thread is responsible for size.z voxels.

thread block size block is decreased from (BLOCK XSIZE, BLOCK YSIZE) to (BLOCK XSIZE,
1) while the grid size grid is increased from (size.x / block.x, size.y / block.y) to
(size.x / block.x, size.y) accordingly. Thread block extension then further changes the
thread block size to (V, BLOCK XSIZE, 1), as shown in Fig. 6. Furthermore, the coordinate
(x,y) at lines 7 and 8 is adapted accordingly. Finally, memory offsets are adapted to access
interleaved data correctly. For interleaved data, the original offset p is replaced with p * V +
threadIdx.x. In contrast, the offset p for unified data is kept as is.

Copyright c© 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 24:1–15
Prepared using cpeauth.cls

14 F. INO

1 #define V 32

2 #define BLOCK_XSIZE 32

3

4 __global__

5 void HistogramPS(short *rdat , short *fdat , dim3 size , int *hist2d)

6 {

7 // (x,y,*): responsible coordinates

8 int x = blockIdx.x * blockDim.y + threadIdx.y;

9 int y = blockIdx.y;

10

11 int pos = size.x * y + x;

12 int base = 0;

13

14 for (int z=0; z<size.z; z++)

15 {

16 int f = fdat[(base + pos) * V + threadIdx.x]; // interleaved

17 int r = rdat[base + pos]; // unified

18 atomicAdd(&hist2d[(WIDTH * f + r) * V + threadIdx.x], 1);

19 base += size.x * size.y;

20 }

21 }

22

23 void MakeHistogramPS(short *rdat , short *fdat , dim3 size , int *hist2d)

24 {

25 dim3 block(V, BLOCK_XSIZE , 1);

26 dim3 grid(size.x / BLOCK_XSIZE , size.y);

27

28 HistogramPS <<<grid , block >>>(rdat , fdat , size , hist2d);

29 }

Figure 6. A simplified code of our parallel JH. The original 32 × 32 thread block size was changed to
32 × 1 by thread block decomposition and then to 32 × 32 × 1 by thread block extension. fdat and

hist2d are interleaved for V tasks, whereas rdat is unified.

5.2. Performance Comparison

We compared our scheme’s performance with that of the naive scheme. Figure 7 shows the
execution times for our scheme and the naive scheme. Figure 8 also shows the breakdowns of
the execution times, including the data readback and download times, the input and output
arrangement times, and the kernel execution time.

For all applications, our scheme runs faster than the naive scheme. In particular, the
speedups of our scheme over the naive scheme reach a factor of 7.7 for NN and 8.5 for APSP.
Comparison of kernel performance revealed that our NN and APSP kernels run 6.4 to 21.8
times faster than the naive kernels. As shown in Table I, both applications exhibit similarity

Copyright c© 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 24:1–15
Prepared using cpeauth.cls

ACCELERATING PARAMETER SWEEP APPLICATIONS ON A GPU 15

0

1

2

3

4

5

6

7

8

9

10

Naive Proposed

E
x

ec
u
ti

o
n

 t
im

e
(m

s)

(a)

0

10

20

30

40

50

60

70

80

90

100

Naive Proposed

E
x

ec
u
ti

o
n

 t
im

e
(m

s)

(b)

0

50

100

150

200

250

300

Naive Proposed

E
x

ec
u
ti

o
n

 t
im

e
(m

s)

(c)

0

10

20

30

40

50

60

Naive Proposed

E
x

ec
u
ti

o
n

 t
im

e
(m

s)

(d)

Figure 7. Performance comparisons for (a) NN, (b) APSP, (c) JH, and (d) GF.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Naive Proposed

E
x
ec

u
ti

o
n
 t

im
e

(m
s)

Download

Input

arrangement
FirstLayer

SecondLayer

ThirdLayer

ForthLayer

Output

arrangement
Readback

(a)

0

5

10

15

20

25

30

35

40

45

Naive Proposed

E
x

ec
u
ti

o
n
 t

im
e

(s
)

Download

Input

arrangement

SSSPKernel1

SSSPKernel2

Output

arrangement

Readback

(b)

0

20

40

60

80

100

120

140

160

180

200

Naive Proposed

E
x
ec

u
ti

o
n
 t

im
e

(m
s)

Download

Input

arrangement

MakeHistogram

Output

arrangement

Readback

(c)

0

5

10

15

20

25

Naive Proposed

E
x
ec

u
ti

o
n
 t

im
e

(m
s)

Download

Input

arrangement

Rows

Columns

Output

arrangement

Readback

(d)

Figure 8. Breakdowns of execution times for (a) NN, (b) APSP, (c) JH, and (d) GF.

Copyright c© 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 24:1–15
Prepared using cpeauth.cls

16 F. INO

of memory accesses but lack continuity. In these cases, our scheme takes advantage of memory
coalescing as described in Section 4.3. For example, the original version of NN suffers from
noncoalesced accesses because irregular connections between the neurons make it difficult to
realize coalesced access on the GPU. Our scheme eliminates such irregular access patterns by
simultaneously running multiple NNs. The irregularity can be found in not only the memory
operations but also the instructions. With the help of the CUDA Profiler, we found that our
scheme reduced the number of branches in the four kernels from approximately 292K to 15K.
We also found that the overhead for data arrangement is acceptably small in this application:
5.7% of the execution time was used to interleave the data for 32 tasks.

Similar to the NN kernels, the APSP kernels achieve significant speedups, ranging from a
factor of 7.4 to a factor of 7.7. The main reason for this acceleration is a reduction in the
number of divergent branches. This number is reduced from 90M to 25M in SSSPKernel1 and
from 6M to 2M in SSSPKernel2. Moreover, our kernels use the shared memory to store the
common data C presented in Table II. Consequently, SSSPKernel1 replaces 64% of the global
memory accesses with shared memory accesses. Thus, the simultaneous processing of multiple
tasks serves to eliminate irregular instruction patterns within warps (i.e., divergent warps)
and to exploit shared memory, neither of which can be accomplished by a single task in this
application.

Note that the readback times of NN and APSP are reduced by factors of 25 and 15,
respectively. These reductions are primarily due to our task organization, which coalesces
V readback operations into a single operation. For example, 32 readbacks of 40 B blocks of
data are coalesced into a single readback of a 1280 B block of data in NN. In particular, our
scheme efficiently reduces readback time if each readback operation transfers a small amount
of data. In this case, the transfer latency rather than the transfer bandwidth dominates the
readback time. In contrast, there is no significant reduction in the corresponding results for
JH and GF because their readback times are determined by the transfer bandwidth.

In contrast to NN and APSP, our scheme runs the remaining applications slightly faster than
the naive scheme does. JH exhibits neither similarity nor continuity of memory accesses and
thus neither scheme can achieve coalesced access for JH. However, our kernel runs 1.1 times
faster than the naive kernel because it increases the L1 cache hit rate from 0% to 73%. Thus,
this improvement is data dependent, meaning that our scheme will not always run faster than
the naive scheme. However, JH deals with clinical datasets, which have similar distributions
in terms of X-ray beam intensities. In this case, the similarity of intensities between multiple
datasets can be higher than that within a single dataset. Thus, the similarity of datasets
explains our scheme’s performance improvement.

In contrast, both schemes achieve coalesced access for GF, which exhibits both similarity
and continuity of memory accesses. However, our row and column kernels run 1.8 and 1.5
times faster, respectively, than the naive kernels. This acceleration is due to an increase in
the L2 cache hits: we found that the number of these hits increased by factors of 2.3 and 1.4,
respectively, for the row and column kernels. The increases can be explained as follows. The
GTX 580 card has 768 KB of L2 cache and the input image consists of 1024 × 1024 pixels,
each containing 4 bytes of data. With the naive scheme, the L2 cache can store 192 rows of
the image at any time. On the other hand, it can store 6 rows of the interleaved image for our
scheme. The number of thread blocks that access these rows during row convolution reaches

Copyright c© 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 24:1–15
Prepared using cpeauth.cls

ACCELERATING PARAMETER SWEEP APPLICATIONS ON A GPU 17

0

4

8

12

16

20

24

28

32

100

101

102

103

104

105

106

107

108

32 128 512 2K 8K 32K 128K 512K 2M

S
p

ee
d

u
p

E
x
ec

u
ti

o
n
 t

im
e

(m
s)

Number of vertices

Naive

Proposed

Speedup

Figure 9. Execution times and speedups of APSP for different numbers of vertices. Execution times
are presented in the log scale.

96 (= 4 × 24) in the naive scheme and 256 (= 128 × 2) in our scheme, because both schemes
use the thread block size 32 × 8 and each thread is responsible for 8 columns. Therefore, our
scheme allows more than twice the number of thread blocks to access data in the L2 cache,
producing higher locality. Although our scheme produces efficient kernels, this advantage is
canceled by the arrangement overhead.

5.3. Scalability Analysis

Finally, we investigated how our scheme’s performance scales with respect to the problem
size. This scalability analysis intends to increase the data size of elements rather than the
number of elements (i.e., the granularity of tasks rather than the number of tasks), because the
performance behavior of the latter case can be easily estimated by multiplying execution time
by the number of kernel invocations needed to process all elements. To perform the scalability
analysis, we executed APSP and JH with different problem sizes. NN was not investigated for
this analysis, because this application required network construction for each image size, and
the network was hardcoded inside the kernel functions.

Figure 9 shows the execution times and speedups of APSP with varying numbers of vertices
ranging from 32 to 2M. As we increased the number of vertices from 32 to 256, the speedup
increased from a factor of 9.9 to a factor of 26.2. Then, the speedup decreased and converged
to a factor of approximately 2.5 as we increased the number of vertices. A shortage of resident
threads explains this behavior. The naive scheme creates N threads for N vertices, whereas
our scheme runs 32N threads for N vertices. Consequently, when N ≤ 2048, the naive scheme
performs poorly owing to a lack of a sufficient number of resident threads to hide memory
access latency. The performance improves when N > 2048, but the use of shared memory
makes our scheme run faster than the naive scheme.

Copyright c© 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 24:1–15
Prepared using cpeauth.cls

18 F. INO

0.9

1.0

1.1

1.2

1.3

1.4

0

200

400

600

800

1000

1 10 19 28 37 46 55 64

S
p

ee
d

u
p

E
x
ec

u
ti

o
n
 t

im
e

(m
s)

Number of slices

Naive

Proposed

Speedup

Figure 10. Execution times and speedups of JH for different numbers of slices. Our scheme cannot
simultaneously execute more than 41 slices.

Figure 10 shows the results of JH for different numbers of 512 × 512 pixel slices, ranging
from 1 to 64. As this figure shows, our scheme cannot execute more than 41 slices owing to
the lack of off-chip memory. The bottleneck in the code is the data arrangement procedure,
which consumes 64 times more memory space than the naive scheme: 32 times more because
there are 32 tasks and then 2 times more for the input and output data. Thus, our scheme can
fail to process applications that use large datasets. However, JH does not have complex data
dependencies within its computation. Therefore, the entire volume of data can be decomposed
into small blocks that can be processed sequentially. Consequently, we can process datasets
with more than 41 slices by launching the kernel iteratively, each time for 41 slices.

Figure 11 shows the results of GF for different image sizes ranging from 256 × 256 pixels
to 2048 × 2048 pixels. Similar to the results of JH, our scheme cannot execute more than
1280 × 1280 pixels. The speedup for 256 × 256 pixels is higher than that for other pixels. For
256×256 pixel images, the naive scheme performs poorly owing to a lack of a sufficient number
of thread blocks to utilize all CUDA cores. In contrast, our scheme avoids such idle cores by
processing V tasks simultaneously.

5.4. Discussion

Our parallel scheme takes advantages of a memory coalescing technique and an explicitly-
managed cache (i.e., shared memory), which are available on recent NVIDIA cards.
Consequently, our scheme is efficient also for Tesla and Quadro cards. However, the execution
configuration must be tuned to maximize the effective performance on each card, because
GPUs exhibit different performance characteristics with different amounts of resources [28].
For example, we applied this kind of optimization to GF in order to avoid bank conflicts, as
we mentioned in Section 5.

Copyright c© 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 24:1–15
Prepared using cpeauth.cls

ACCELERATING PARAMETER SWEEP APPLICATIONS ON A GPU 19

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0

50

100

150

200

250

300

256 512 768 1024 1280 1536 1792 2048

S
p

ee
d

u
p

E
x
ec

u
ti

o
n
 t

im
e

(m
s)

Image height/width

Naive

Proposed

Speedup

Figure 11. Execution times and speedups of GF for different image sizes. Our scheme cannot
simultaneously execute more than 1280 × 1280 pixels.

Because our parallel scheme assumes the CUDA memory architecture, it cannot be directly
applied to CPU-based HPC systems. However, our data arrangement procedure may increase
the cache hit rate if it improves the locality of reference. The procedure may also be useful to
minimize the memory access stride for single-instruction, multiple-data (SIMD) instructions,
such as streaming SIMD extensions (SSE) [29].

We think that our data arrangement process is generic for regular data but not for irregular
data. For example, the transposition function in Fig. 4 cannot generate an efficient data
structure for graphs with different topologies and sizes, because our parallel scheme probably
fails to access them in a coalesced manner. With respect to APSP, its input graph can be
regarded as irregular data, but it does not require data arrangement, as we mentioned in
Section 5.1. Because our transposition function separates the input data from the output
data, developing an in-place transposition algorithm is left as a future work.

6. CONCLUSION

We have presented a parallel scheme for accelerating PS applications with CUDA. Our scheme
improves performance by simultaneously processing multiple parameters rather than a single
parameter. It interleaves the input and output data to coalesce memory access for multiple
parameters, and it saves the off-chip memory bandwidth by using the shared on-chip memory
to store common data that can be accessed by the multiple parameters.

We conducted experiments in which we applied our scheme to four practical applications.
Our scheme performed 8.5 times better for a graph application than the naive scheme, which
processes a single parameter at a time. In particular, our kernels run faster than naive kernels
if they have irregular access patterns within a single task but have similar access strides

Copyright c© 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 24:1–15
Prepared using cpeauth.cls

20 F. INO

across multiple tasks (we characterized such access patterns on the basis of the concept of
similarity and continuity of memory accesses). Therefore, we believe that our scheme is useful
for addressing the problem of irregular memory accesses if the memory accesses cannot be
coalesced for a single parameter. The regularization effect of our task organization scheme can
be found in not only memory operations but also instructions.

In addition, we identified some disadvantages of our scheme. Similarity of memory accesses
can be successfully exploited if the performance benefit of memory coalescing is large enough
to compensate for the overhead incurred by the data arrangement. For some kernels, we need
to reduce the thread block size and the usage of shared memory because our scheme consumes
roughly V = 32 times more resources than the naive scheme.

ACKNOWLEDGEMENTS

This study was partially supported by JSPS KAKENHI Grants 23300007 and 23700057 and by
the JST CREST program “An Evolutionary Approach to Construction of a Software Development
Environment for Massively-Parallel Computing Systems.” The authors would like to thank the
anonymous reviewers for helpful comments to improve their paper.

REFERENCES

1. S. D. Olabarriaga, A. J. Nederveen, and B. O. Nualláin, “Parameter sweeps for functional MRI research
in the “virtual laboratory for e-science” project,” in Proc. 17th IEEE Int’l Symp. Cluster Computing and
the Grid (CCGrid’07), May 2007, pp. 685–690.

2. C. Youn and T. Kaiser, “Management of a parameter sweep for scientific applications on cluster
environments,” Concurrency and Computation: Practice and Experience, vol. 22, no. 18, pp. 2381–2400,
Dec. 2010.

3. E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym, “NVIDIA Tesla: A unified graphics and computing
architecture,” IEEE Micro, vol. 28, no. 2, pp. 39–55, Mar. 2008.

4. NVIDIA Corporation, “CUDA Programming Guide Version 4.2,” Apr. 2012. [Online]. Available:
http://developer.nvidia.com/cuda/

5. J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and J. C. Phillips, “GPU computing,”
Proceedings of the IEEE, vol. 96, no. 5, pp. 879–899, May 2008.

6. The Folding@Home Project, “Folding@home distributed computing,” 2010, [Online]. Available: http:
//folding.stanford.edu/

7. F. Ino, Y. Munekawa, and K. Hagihara, “Sequence homology search using fine grained cycle sharing of
idle GPUs,” IEEE Trans. Parallel and Distributed Systems, vol. 23, no. 4, pp. 751–759, Apr. 2012.

8. M. Motokubota, F. Ino, and K. Hagihara, “Accelerating parameter sweep applications using CUDA,” in
Proc. 19th Euromicro Int’l Conf. Parallel, Distributed and Network-Based Computing (PDP’11), Feb.
2011, pp. 111–118.

9. F. Varray, C. Cachard, A. Ramalli, P. Tortoli, and O. Basset, “Simulation of ultrasound nonlinear
propagation on GPU using a generalized angular spectrum method,” EURASIP J. Image and Video
Processing, vol. 2011, no. 17, Nov. 2011, 6 pages.

10. Y. Munekawa, F. Ino, and K. Hagihara, “Accelerating Smith-Waterman algorithm for biological database
search on CUDA-compatible GPUs,” IEICE Trans. Information and Systems, vol. E93-D, no. 6, pp.
1479–1488, Jun. 2010.

11. J. Meng, D. Tarjan, and K. Skadron, “Dynamic warp subdivision for integrated branch and memory
divergence tolerance,” in Proc. 37th Annual Int’l Symp. Computer Architecture (ISCA’10), Jun. 2010,
pp. 235–246.

12. E. Z. Zhang, Y. Jiang, Z. Guo, and X. Shen, “Streamlining GPU applications on the fly,” in Proc. 24th
ACM Int’l Conf. Supercomputing (ICS’10), Jun. 2010, pp. 115–125.

Copyright c© 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 24:1–15
Prepared using cpeauth.cls

ACCELERATING PARAMETER SWEEP APPLICATIONS ON A GPU 21

13. E. Z. Zhang, Y. Jiang, Z. Guo, K. Tian, and X. Shen, “On-the-fly elimination of dynamic irregularities
for GPU computing,” in Proc. 16th Int’l Conf. Architectural Support for Programming Languages and
Operating Systems (ASPLOS’11), Mar. 2011, pp. 369–380.

14. S. Che, J. W. Sheaffer, and K. Skadron, “Dymaxion: Optimizing memory access patterns for heterogeneous
systems,” in Proc. Int’l Conf. High Performance Computing, Networking, Storage and Analysis (SC’11),
Nov. 2011, 11 pages (CD-ROM).

15. M. J. Litzkow, M. Livny, and M. W. Mutka, “Condor - a hunter of idle workstations,” in Proc. 8th Int’l
Conf. Distributed Computing Systems (ICDCS’88), Jun. 1988, pp. 104–111.

16. J.-P. Goux, S. Kulkarni, M. Yoder, and J. Linderoth, “Master-worker: An enabling framework for
applications on the computational grid,” Cluster Computing, vol. 4, no. 1, pp. 63–70, Mar. 2001.

17. R. Buyya, D. Abramson, and J. Giddy, “Nimrod/G: An architecture for a resource management and
scheduling system in a global computational grid,” in Proc. 4th Int’l Conf. High Performance Computing
in Asia-Pacific Region (HPC ASIA’00), May 2000.

18. R. Buyya, D. Abramson, J. Giddy, and H. Stockinger, “Economic models for resource management and
scheduling in Grid computing,” Concurrency and Computation: Practice and Experience, vol. 14, no.
13/15, pp. 1507–1542, Dec. 2002.

19. F. Berman, R. Wolski, H. Casanova, W. Cirne, H. Dail, M. Faerman, S. Figueira, J. Hayes, G. Obertelli,
J. Schopf, G. Shao, S. Smallen, N. Spring, A. Su, and D. Zagorodnov, “Adaptive computing on the grid
using AppLeS,” IEEE Trans. Parallel and Distributed Systems, vol. 14, no. 4, pp. 369–382, Apr. 2003.

20. V. Volkov and J. W. Demmel, “Benchmarking GPUs to tune dense linear algebra,” in Proc. Int’l Conf. High
Performance Computing, Networking, Storage and Analysis (SC’08), Nov. 2008, 11 pages (CD-ROM).

21. S. Nakagawa, F. Ino, and K. Hagihara, “A middleware for efficient stream processing in CUDA,” Computer
Science - Research and Development, vol. 25, no. 1/2, pp. 41–49, May 2010.

22. NVIDIA Corporation, “GPU Computing SDK,” 2012. [Online]. Available: http://developer.nvidia.com/
gpu-computing-sdk/

23. billconan and kavinguy, “A neural network on GPU,” 2008. [Online]. Available:
http://www.codeproject.com/Articles/24361/A-Neural-Network-on-GPU

24. P. Harish and P. J. Narayanan, “Accelerating large graph algorithms on the GPU using CUDA,” in Proc.
14th Int’l Conf. High Performance Computing (HiPC’07), Dec. 2007, pp. 197–208.

25. K. Ikeda, F. Ino, and K. Hagihara, “Accelerating joint histogram computation for image registration on the
GPU,” in Proc. Computer Assisted Radiology and Surgery: 26th Int’l Congress and Exhibition (CARS’12),
Jun. 2012, pp. S72–S73.

26. NVIDIA Corporation, “NVIDIA’s Next Generation CUDA Compute Architecture: Fermi,” Nov. 2009,
[Online]. Available: http://www.nvidia.com/content/PDF/fermi white papers/NVIDIA Fermi Compute
Architecture Whitepaper.pdf

27. A. M. Aji, M. Daga, and W. chun Feng, “Bounding the effect of partition camping in GPU kernels,” in
Proc. 8th Int’l Conf. Computing Frontiers (CF’11), May 2011, 10 pages.

28. A. Nukada and S. Matsuoka, “Auto-tuning 3-d FFT library for CUDA GPUs,” in Proc. Int’l Conf. High
Performance Computing, Networking, Storage and Analysis (SC’09), Nov. 2009, 10 pages (CD-ROM).

29. A. Klimovitski, “Using SSE and SSE2: Misconceptions and reality,” in Intel Developer Update Magazine,
Mar. 2001.

Copyright c© 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 24:1–15
Prepared using cpeauth.cls

