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SUMMARY This paper presents a stream programming framework,
named GPU-chariot, for accelerating stream applications running on graph-
ics processing units (GPUs). The main contribution of our framework is
that it realizes efficient software pipelines on multi-GPU systems by en-
abling out-of-order execution of CPU functions, kernels, and data transfers.
To achieve this out-of-order execution, we apply a runtime scheduler that
not only maximizes the utilization of system resources but also encapsu-
lates the number of GPUs available in the system. In addition, we imple-
ment a load-balancing capability to flow data efficiently through multiple
GPUs. Furthermore, a callback interface enables overlapping execution of
functions in third-party libraries. By using kernels with different perfor-
mance bottlenecks, we show that our out-of-order execution is up to 20%
faster than in-order execution. Finally, we conduct several case studies
on a 4-GPU system and demonstrate the advantages of GPU-chariot over
a manually pipelined code. We conclude that GPU-chariot can be useful
when developing stream applications with software pipelines on multiple
GPUs and CPUs.
key words: stream processing, GPGPU, CUDA, task scheduling

1. Introduction

Stream processing is a programming paradigm that exploits
data parallelism for accelerating compute-intensive appli-
cations [1]. Within this paradigm, input and output (I/O)
data are organized into data streams, which are sequences of
similar data elements. The input data stream flows through
a series of processing stages in a pipelined manner. This
pipelined execution produces the output data stream by en-
abling multiple data elements to be processed simultane-
ously. Because of its simplicity, stream processing is widely
used in real-time media applications such as graphics ren-
dering [2] and signal processing [3].

Numerous architectures have been developed to accel-
erate stream applications. An emerging architecture in this
field is the GPU [4]. Although this hardware was originally
designed for graphics applications, the emergence of the
compute unified device architecture (CUDA) technology [5]
made it possible to parallelize general applications using a
C-like language. Using this programming framework, ap-
plication hotspots can be implemented as kernel functions
and parallely executed on hundreds of GPU cores to offload
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CPUs. Various scientific applications have been success-
fully accelerated, achieving a typical speedup of ten times
over CPU implementations [6].

Several research results that can assist programmers
in implementing stream applications running on a CUDA-
compatible GPU are available. Udupa et al. [7] developed
a compiling framework that maps StreamIt programs [8] to
the GPU. Because StreamIt is a high-level language for
stream applications, it relieves programmers from having to
write and optimize their kernels to fully utilize the fast mem-
ory resources on the GPU chip. Similar frameworks [9]–
[11] that can achieve significant acceleration over CPU-
based implementations are available; however, the kernels
generated by them are for single-GPU systems. Thus, an
automated framework that addresses multi-GPU systems
and scales application performance according to the num-
ber of available GPUs is required. In this paper, the term
multi-GPU system is used to denote a single-node system
equipped with multiple GPUs. Because multi-node systems
are conventional systems that been have addressed by nu-
merous studies [12]–[14], they are beyond the scope of this
paper.

Huynh et al. [15] recently presented an automated
framework that maps StreamIt programs to a multi-
GPU system. Their framework employs multiple CUDA
streams [5] for constructing software pipelines that over-
lap kernel execution with data transfer. Although the best
speedup they obtained on a 4-GPU system was 2.97, the
overlap efficiency can be further improved by taking advan-
tage of data parallelism inherent in stream applications.

The key concept used to improve the overlap efficiency
is the out-of-order execution of CUDA functions. However,
this technique is currently not supported by CUDA streams.
Moreover, to prevent pipeline stalls on all GPU architec-
tures, except recently released GK110 [24], programmers
are required to call CUDA functions in an appropriate order.
Identifying an ordering that prevents pipeline stalls is time-
consuming because it depends on runtime situations such as
timing behaviors, data contents, and number of GPUs. Fur-
thermore, programmers must create multiple CPU threads to
process data elements on CPU cores. The execution of these
multi-threaded programs requires mutual exclusion in order
to enable resource sharing without violating correctness. In
addition, to achieve linear speedups over single-GPU imple-
mentations, a load-balancing mechanism is needed to assign
tasks to GPUs efficiently. Thus, programmers are burdened
with nonessential but important work, such as task schedul-
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ing, resource allocation, and CPU thread management.
In this paper, we present a programming framework,

termed GPU-chariot, for accelerating stream applications
running on multi-GPU systems. GPU-chariot extends our
previous study [9] in order to reduce development efforts
for multi-GPU systems by automating the abovementioned
time-consuming tasks. Our framework allows for out-of-
order execution of CUDA functions, and realizes efficient
software pipelines in four stages: (1) CPU execution, (2)
data download from the CPU to the GPU, (3) GPU exe-
cution, and (4) data readback from the GPU to the CPU.
Because this capability works automatically at runtime, our
framework relieves programmers from determining an ap-
propriate order for CUDA function calls. Using GPU-
chariot, programmers are only required to write simple code
statements that serially apply a sequence of operations to
data stream elements.

The rest of the paper is organized as follows. Section 2
introduces related work in the area of stream processing on
GPUs. Section 3 presents preliminaries, and identifies com-
plications that occur when implementing stream applica-
tions with CUDA. In Sect. 4, we illustrate our GPU-chariot
interface using a code example. A detailed description of
the design and implementation of GPU-chariot is presented
in Sect. 5. Section 6 presents the experimental results ob-
tained from practical applications. Finally, in Sect. 7, we
present conclusions and future work.

2. Related Work

NVIDIA has recently released their latest architecture called
GK110 [24]. Unlike previous architectures, GK110 is
equipped with the Hyper-Q technology, which provides 32
hardware work queues. These queues allows 32 CUDA
streams to be processed concurrently on a device. Ow-
ing to multiple hardware queues, implicit synchronization is
avoided between 32 CUDA streams (see Sect. 3.2). Conse-
quently, overlapping execution can be easily realized if mul-
tiple CUDA streams are used for each device. The advan-
tage of GPU-chariot over the Hyper-Q technology is a flex-
ible, software-based scheduling framework. On the GK110
architecture, tasks are always processed in the first-come,
first-served (FCFS) rule. In contrast, our task-scheduling
scheme is capable of changing the order of task execution
at runtime. Another advantage is an inter-device mecha-
nism for avoiding excessive execution (see Sect. 5.3). This
mechanism is useful to implement a sophisticated schedul-
ing algorithm to prevent parallel queues from accessing in-
tensively shared resources, such as the bus.

Another concern addressed by GPU-chariot is the gap
of capabilities between different architectures. The latest
GPUs can be classified into three groups, according to the
number of direct memory access (DMA) engines and that
of hardware work queues: (1) single DMA engine, single
queue, (2) multiple DMA engines, single queue, and (3)
multiple DMA engines, multiple queues. All architectures
except GK110 have a single work queue. Consequently, im-

plicit synchronization can prevent overlapping execution. In
contrast, GK110 cards are free from such concerns, as we
mentioned above. GeForce and Tesla cards have a different
number of DMA engines, thus yielding different bandwidths
for bidirectional data transfers. We believe that our runtime
optimization can prove useful in hiding such architectural
differences from the application code.

Various multi-GPU systems have been used to scale the
performance of stream applications in a wide range of fields
such as signal processing [16], volume visualization [17],
and data imaging [18]. Although these studies demonstrated
the effectiveness of stream processing on multi-GPU sys-
tems, they are specific to the application they implemented.
In contrast, we concentrate on freeing application develop-
ers from the tedious chore of managing CUDA streams.

Huynh et al. [15] presented a unique framework that
maps StreamIt programs [8] to multiple GPUs. Their main
focus was to establish a program partition that efficiently uti-
lizes memory resources on the GPU. Conversely, our study
focuses on realizing an efficient overlapping mechanism,
and clarifying how this mechanism can be implemented to
increase application performance.

Several runtimes aiming to exploit the full resources in
multi-GPU systems have been presented. Chen et al. [19]
proposed a task scheduler capable of achieving dynamic
load balancing at a finer granularity than what is supported
in CUDA. They invoked a persistent kernel to process fine-
grained tasks in the host’s queues associated with the GPU.
Diamos and Yalamanchili [20] proposed a dynamic paral-
lelization technique, called kernel level speculation, which
uses control speculation to expose parallelism. Although
these studies successfully increase the efficiency of kernel
execution, they have not attempted to increase the efficiency
of pipelined execution.

There are research projects [10], [11] that assist pro-
grammers in developing stream applications running on
single-GPU systems. These projects provide compiling
frameworks that generate CUDA codes for StreamIt pro-
grams. The key concept for generating efficient kernels is
to classify threads into two groups: dedicated threads for
accessing data and threads for processing data. It might be
interesting to integrate our runtime optimization technique
with the static optimization techniques mentioned above.

Finally, scheduling algorithms have been studied from
a theoretical viewpoint. Our target problem is similar to
a hybrid flow shop (HFS) problem [21], which is a com-
mon class of scheduling problems for manufacturing envi-
ronments. The HFS problem assumes that a set of N tasks
is processed in a series of K stages. However, our target
problem differs from the HFS problem because it prohibits
resources in different pipelines to pass data between them.
In addition, our algorithm addresses an online scheduling
problem where not all tasks are available from the begin-
ning. Since obtaining the best schedule with the minimum
make-span is a nondeterministic polynomial (NP) time hard
problem, many heuristics were proposed in the past [22],
[23]. Our algorithm can be regarded as a heuristic that uses
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a dispatching rule.

3. Preliminaries

3.1 Stream Programming Model

Let I and O be the input and output data streams, respec-
tively. Suppose that a stream application has a set F =
{ f1, f2, . . . , fK} of K pipeline stages, where fk (1 ≤ k ≤ K)
represents the k-th pipeline stage. Then, the output data
stream is given by O = fK ◦ fK−1 ◦ · · · ◦ f1(I), where ◦ rep-
resents the operator for function composition. Within the
context of GPU computing, set F typically consists of CPU
execution, data download, GPU execution, and data read-
back stages (K = 4).

The stream programming model assumes that the com-
putations of different data elements are not interdependent.
Therefore, the input data stream I can be arbitrarily broken
into chunks e1, e2, . . . , eN and processed in a pipelined man-
ner; N represents the number of chunks and ei (1 ≤ i ≤ N)
represents the i-th chunk. Moreover, because of the data
independence property, the chunks can be processed in an
out-of-order fashion. A task is defined as the processing of
a chunk through a set F of pipeline stages. Furthermore,
we assume that the data size |ei| of chunk ei determines the
granularity of a task.

Stream applications can be implemented using CUDA
streams and asynchronous CUDA functions. A CUDA
stream is a sequence of commands that are executed se-
quentially [5]. These commands are used for data down-
load, kernel execution, and data readback. Because different
CUDA streams may execute their commands concurrently,
data transfers from one CUDA stream can overlap with the
kernel execution from another CUDA stream. A code ex-
ample illustrating this process can be found in Appendix A.

3.2 Problem Description

When using CUDA streams, implicit synchronization [5]
possesses several technical difficulties because it blocks
commands from other CUDA streams. An example of
blocking execution is presented in Fig. A· 1 of Appendix A.
Because most GPU architectures, except recently released
GK110 [24], have a single hardware work queue, commands
are serially processed through this queue. Therefore, block-
ing behavior is caused by the in-order execution of data
transfer commands. According to our preliminary exper-
iments, the constraints of pre-GK110 architectures can be
summarized as follows:

C1. Data transfer commands from CUDA streams are pro-
cessed in an in-order sequence.

C2. Kernels are executed in an in-order sequence.

Resource allocation is another important issue for a
multi-threaded host code. Typically, in multi-GPU systems,
the GPUs share an I/O bus, such as the peripheral compo-
nent interconnect express (PCIe) bus. Another shared re-

Fig. 1 Simplified example of host code for a SETI spectrometer sys-
tem [16] using GPU-chariot. N tasks are processed on D GPUs, and
each GPU uses S CUDA streams to achieve overlap. MyfftCol and
cufftExecC2C are a user-defined kernel and a vendor-provided function,
respectively.

source is the CPU core, which must be fully exploited in or-
der to accelerate the CPU execution stage. Thus, to achieve
high performance, our resource allocation scheme must
avoid resource starvation and flow more chunks through
pipelines.

In summary, we consider the problem of mapping N
tasks onto D software pipelines that lay on D GPUs and
C CPU cores. Each task contains K serial commands, and
each command is considered a pipeline stage. We assume
that GPUs are connected via B bidirectional buses, and each
unidirectional link can be used simultaneously by a down-
load or readback command. Hence, we assume that each
chip contains at least two DMA engines. Conversely, be-
cause GeForce GPUs have a single DMA engine, a down-
load or readback command occupies a bidirectional link. In
order to produce efficient schedules, we also assume that the
time spent on each pipeline stage is proportional to the size
of a chunk. Formally, for all 1 ≤ i, j ≤ N and 1 ≤ k ≤ K,
|ei| ≥ |e j| ⇒ tk,i ≥ tk, j, where tk,i represents the time spent
for ei on the k-th stage.
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4. GPU-Chariot Interface

The GPU-chariot interface is designed to reduce efforts of
modifying nonpipelined single-GPU implementations into
pipelined multi-GPU implementations. Figure 1 presents a
simplified host code example that is part of a SETI spec-
trometer system [16]. In this example, we sequentially com-
pute the fast Fourier transform (FFT) of the columns and
rows of a two-dimensional (2-D) matrix in two phases: the
first phase is implemented by the user-written MyfftCol
kernel, while the second phase is implemented by the
vendor-provided cufftExecC2C function [25]. Note that to
transpose the matrix data, the consecutive phases must be
synchronized.

As shown in Fig. 1, the first phase, in addition to en-
capsulating CUDA functions within GPU-chariot functions,
exhibits a simple loop structure for processing a sequence
of chunks. Therefore, to apply commands to each chunk be-
ing processed, programmers are simply required to replace
CUDA function calls with GPU-chariot function calls. The
first of the two arguments of the replaced functions is used
to provide the additional information of task ID and task
granularity, which in our case are variables i and width,
respectively. The task ID is required to associate com-
mands with tasks because commands belonging to the same
task should be assigned to the same GPU to minimize data
transfer. Likewise, the task granularity is used by the run-
time scheduler to schedule tasks according to the size of the
chunks. Because GPU-chariot functions are processed asyn-
chronously, similar to CUDA functions, the synchronize
function is required to ensure that all issued commands are
finalized before proceeding to the second phase.

In addition, GPU-chariot provides a callback inter-
face capability for integrating CPU- and CUDA-based func-
tions of third-party libraries into pipelines. Owing to
this interface, GPU-chariot can be applied to any appli-
cation that uses third-party libraries, such as CUFFT [5].
As shown in the second phase in Fig. 1, the func-
tion launchCallbackRoutine registers the user-written
function MycufftPlan1dSetStream and vendor-provided
function cufftExecC2C as callback functions. In addi-
tion, the flags flagCPU and flagGPU are provided to GPU-
chariot for identifying the resources used by the registered
function. During runtime, this information is used to select
an overlappable command from the issued commands.

Because variable D appears only in line 1 during the
declaration of the scheduler instance, the dependence of our
host code on the number of GPUs, D, is limited. Further-
more, in our host code, there is no need to bind tasks with
CUDA streams. Such bindings are automated by GPU-
chariot.

5. GPU-Chariot Runtime

Given a CUDA-like program shown in Fig. 1, our GPU-
chariot runtime performs several key steps during the pro-

gram execution:
CPU thread management. Our runtime creates and

joins CPU threads to handle software pipelines in the sys-
tem.

Task and command buffering. To enable out-of-order
execution of commands, GPU-chariot stores tasks in a task
buffer. Tasks are registered with their issued commands,
namely instances of CUDA and callback function calls that
have to be executed.

Resource allocation. The objective of our GPU-chariot
runtime is to allocate resources to CUDA streams and in-
crease the number of concurrent overlapping commands,
while avoiding excessive execution.

Task assignment and command dispatching. Our GPU-
chariot runtime uses the abovementioned task buffer to as-
sign tasks to CUDA streams, and to dispatch the commands
required for overlapping execution. In other words, the dis-
patched commands are executed in pipelines while satisfy-
ing constraints C1 and C2. Thus, the execution order, which
may vary according to the progress of the program execu-
tion, is optimized at runtime.

In the following sections, we describe in detail each
step of GPU-chariot runtime, and explain how it addresses
the abovementioned issues.

5.1 CPU Thread Management

GPU-chariot runs three types of CPU threads to process
the host code, scheduler, and callback functions, as shown
in Fig. 2. The host code is processed by the main thread,
which creates D scheduling threads for handling D GPUs.
The scheduling threads create and join child threads, called
executioners, which asynchronously process callback func-
tions. The lifetime of an executioner is defined from the
beginning to the end of the registered callback function.

As shown in line 1 of Fig. 1, the main thread initial-
izes a scheduler instance with the number of GPUs, D, and
that of CUDA streams, S . Next, it creates D scheduling
threads, each with S CUDA streams. Hence, there are DS
CUDA streams in total. Each scheduling thread is responsi-
ble for assigning tasks and dispatching commands to a GPU
(i.e., S CUDA streams). We employ this one-CPU-thread-
per-GPU scheme to parallelize scheduling procedures and
achieve high performance.

To bind each thread to a specific CPU core, we create
a processor affinity mask. Such bindings in multi-threaded

Fig. 2 CPU thread management in GPU-chariot. During runtime,
scheduling threads are created to assign tasks to CUDA streams. Then,
each scheduling thread creates CPU threads to process the execution stages
registered by the callback interface.
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Fig. 3 Timing behavior of runtime of GPU-chariot. Our runtime receives
GPU-chariot function calls from the host code, and then registers the cor-
responding CUDA function calls as command instances. Multi-threaded
schedulers, which run concurrently with the main thread, dispatch the com-
mand instances.

applications are useful because they prevent cache misses
due to thread migration.

5.2 Task and Command Buffering

Figure 3 illustrates the relationship between the host code
and the application programming interface (API) of CUDA.
In this figure, solid and dashed arrows represent syn-
chronous and asynchronous calls, respectively. The host
code asynchronously calls GPU-chariot functions in a se-
quential manner, as shown in the loop of the main body
of the code in Fig. 1. At each call, a command is placed
into a command queue, which is used later to execute cor-
responding CUDA function. Similarly, callback functions
(i.e., CPU- and CUDA-based functions) are queued by the
launchCallbackRoutine function.

The task buffer is organized such that it can associate
tasks with commands. As shown in Fig. 4, an entry in the
task buffer consists of the task ID, task granularity, and a
command queue that stores a series of commands to be ex-
ecuted for the task. Because each function call of GPU-
chariot places a command into a queue, the main thread
first checks whether its corresponding task is already reg-
istered in the task buffer. If no corresponding task is found,
a task entry is created with its ID, granularity, and command
queue. As we mentioned in Sect. 4, this information is pro-
vided by the additional arguments of the replaced function.
Otherwise, the main thread simply queues the command into
the existing queue.

Programmers can specify at compile time which order-
ing rule should be used:

• The largest first (LF) rule. At each queuing operation,
the buffered tasks are sorted in a descending order of
task granularity.

• The FCFS rule. In this case, the order of the tasks re-
mains unchanged.

The LF rule aims to increase the efficiency of overlapping

Fig. 4 Runtime architecture of GPU-chariot. Commands are associated
with tasks to avoid changing the sequence of pipeline stages. First, schedul-
ing threads request resource allocation by queuing their responsible device
ID to the priority queue that manages the command they want to dispatch.
The device in the head of the priority queue is allowed to dispatch its com-
mand to an idle CUDA stream.

execution by masking tasks of similar granularity. Overlaps
occur between successive tasks. Therefore, to prevent large
data transfers from being overlapped with the execution of
small kernels, successive tasks should have similar granu-
larity. Otherwise, small tasks prevent large tasks from being
fully masked, thus causing pipeline stalls.

Note that the smallest first (SF) rule, which sorts tasks
in an ascending order of task granularity, is not a good solu-
tion for the asynchronous API. The asynchronous API initi-
ates task execution before receiving all tasks from the host
code. Consequently, the smallest task cannot be always is-
sued first. Conversely, the SF rule maximizes the last read-
back time, which cannot be masked with the kernel execu-
tion time. When times cannot be masked, the execution ef-
ficiency decreases.

Multiple threads can access the task buffer; the main
thread registers tasks to the buffer while scheduling threads
eliminate them for execution. Consequently, a lock/unlock
mechanism is required to access the task buffer without vio-
lating correctness. We use critical sections to implement this
mechanism, whose details are presented in Appendix B.

5.3 Resource Allocation

Because overloaded resources can significantly slowdown
execution, commands must not be excessively processed at
each pipeline stage. Thus, to realize efficient pipelines, our
resource allocation scheme should (1) maximize the number
of concurrent commands with overlap and (2) avoid exces-
sive execution.

We can increase the number of concurrent commands
by taking advantage of our parallel scheduler. As shown in
Fig. 4, because the GPU-chariot runtime has a priority queue
for each pipeline stage, commands at different stages can si-
multaneously allocate resources. In contrast, commands at
the same stage are processed in an FCFS manner. Let Pk be
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the priority queue for the k-th stage, where 1 ≤ k ≤ K. En-
tries of priority queues are IDs of devices that are available
for resource allocation. The device in the head of queue Pk

can allocate its resources for the k-th stage. After the com-
mand is executed, the head entry is dequeued to allow the
next device to allocate its resources. Because each prior-
ity queue is shared among threads, we use critical sections
to serialize the access to the queue. Owing to our queue
organization, this serialization does not occur between com-
mands at different stages, and thus performance degradation
is minimized.

With respect to constraints (1) and (2), each command
before allocating its resources must satisfy the following
two conditions:

Condition for overlapping execution. The key to
achieving overlap is to manage the information on run-
ning commands and prioritize queued commands that can
be overlapped with running commands. As described in the
following sections, counters are used to manage runtime in-
formation. In addition, GPU-chariot consists of a K×K ma-
trixM, which statically defines pairs of overlappable stages.
For example, on GeForce cards, the download stage cannot
overlap with the readback stage, because these cards have
a single DMA engine. The matrix M is initialized during
the declaration of the scheduler instance by inspecting the
hardware through the CUDA API. Thus, the first condition
for a queued command can be stated as follows: (a) there is
no running command or (b) commands are running at other
overlappable stages.

Condition for non-excessive execution. To avoid over-
loaded situations, the GPU-chariot runtime uses counters
and thresholds for each pipeline stage. A counter maintains
the number of commands currently running at a stage, while
a threshold defines the maximum permitted number of com-
mands running at the stage. Excessive execution then can be
avoided (c) if the counter values are below the correspond-
ing thresholds.

Because maximum thresholds are restricted both lo-
cally and globally, they are classified into two groups. Con-
sequently, GPU-chariot utilizes two threshold vectors: local
vector L and global vector G. Local vector L is given by
L = (L1, L2, L3, L4), where Lk (1 ≤ k ≤ 4) represents the
maximum number of concurrent commands a scheduling
thread can dispatch at the k-th stage. Conversely, global vec-
tor G = (G1,G2,G3,G4) considers the total number for all
D scheduling threads in the system. GPU-chariot currently
usesL = (min(C, S ), 1, 1, 1) and G = (min(C,DS ), B,D, B).
The first elements of these vectors indicate that the number
of CPU execution commands is limited by the amount of
physical resources (i.e., C CPU cores) and logical resources
(i.e., S CUDA streams for each GPU). The third elements
represent that a GPU can execute at most one kernel at a
time. The remaining elements are determined on the ba-
sis of the assumption made about the I/O bus mentioned in
Sect. 3.2.

5.4 Task Assignment and Command Dispatching

Scheduling threads are responsible for assigning tasks to
CUDA streams, selecting commands for execution, and dis-
patching commands to CUDA streams. To construct ef-
ficient software pipelines, two key requirements must be
satisfied. First, we should minimize the time required to
dispatch commands to an idle stage by employing multiple
CUDA streams. From this viewpoint, if all pipeline stages
are kept busy, idle CUDA streams are not critical. Sec-
ond, we should minimize the interactions between schedul-
ing threads so that they can run as independent as possible.

To satisfy these requirements, our scheduling threads
circulate pipeline stages independently. In particular, for the
k-th stage of its responsible GPU (1 ≤ k ≤ 4), each thread
processes the following four steps:

1. Resource allocation step. The scheduling thread re-
quests resource allocation for the k-th stage, according
to the two conditions mentioned in Sect. 5.3. If the re-
sponsible device ID of the thread is in the head entry of
priority queue Pk, it allocates the resource. Otherwise,
this step is skipped.

2. CUDA stream selection step. After resources are al-
located, the scheduling thread searches for a CUDA
stream j (1 ≤ j ≤ S ) that has an overlappable com-
mand f ready to be dispatched at the k-th stage. Such a
CUDA stream is found in a cyclic manner to achieve
load balancing between CUDA streams. In particu-
lar, GPU-chariot uses a vectorW = (W1,W2,W3,W4),
where Wk (1 ≤ k ≤ 4) represents the ID of the active
CUDA stream, that currently runs a command at the
k-th stage (Fig. 4). If an idle CUDA stream exists, the
scheduling thread pops a task from the task buffer and
assigns it to the idle CUDA stream.

3. Command dispatching step. The function that corre-
sponds to command f is called using CUDA stream
j. In addition, the active stream ID Wk, local counter,
and global counter of the k-th stage are updated accord-
ingly.

4. Idle detection step. The scheduling thread checks the
status of the k-th stage. If CUDA stream Wk is in
the idle state (i.e., the command execution at the k-th
stage is completed), the thread dequeues the head en-
try from the priority queue Pk and decrements the local
and global counters of the k-th stage.

A more detailed description of the scheduling algorithm can
be found in Appendix B.

6. Experimental Results

In this section, we present the evaluation results of GPU-
chariot in terms of the overhead of the runtime sched-
uler, and discuss its applicability to practical applica-
tions [16], [26]. We compare GPU-chariot code with not
only pure CUDA code but also hybrid code of CUDA and
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(a) (b)

Fig. 5 Speedups of the dummy kernel over a nonpipelined version with fixed chunk sizes. (a) Results for GPU-chariot. (b) Results
for OpenMP. GPU-chariot using a single GPU (D = 1) achieves almost the same speedup as a manually pipelined version.

OpenMP [27]. Similar to the GPU Computing SDK sam-
ple (cudaOpenMP) code [28], this hybrid code calls the
cudaSetDevice function to utilize all available devices
with a single CUDA stream per device.

Experiments were conducted on a Linux PC equipped
with four NVIDIA GeForce GTX 580 cards, two Intel Xeon
X5670 2.93 GHz CPUs, and an Intel 5520 chipset. The sys-
tem had in total C = 12 physical cores and 48 GB main
memory. Each graphics card had 1.5 GB device memory
and a single DMA engine. The graphics cards were con-
nected to a PCIe expansion box, namely ELSA Vridge X200
Tri. This box had two PCIe lanes, enabling two graphics
cards to share a PCIe lane (i.e., B = 2 and D = 4). The ex-
perimental machine had a Western Digital WD3200AAKS
320 GB hard drive connected to a Serial Advanced Technol-
ogy Attachment (SATA) 2.0 interface.

6.1 Overhead Analysis

We performed detailed analysis of the overhead using a
dummy program that could arbitrarily change the kernel ex-
ecution and data transfer times. The dummy kernel loaded
integers from global memory, repeatedly applied shift oper-
ations on them, and stored results back to global memory.
We iteratively invoked the kernel to process N = 48 chunks.
Each chunk ei (1 ≤ i ≤ N) consisted of an array of integers,
and the chunk size |ei| ranged from 3 to 30 MB.

Figure 5 shows speedups over a nonpipelined imple-
mentation, confirming that how GPU-chariot reduces the ex-
ecution time by software pipelining on multiple GPUs. The
transfer ratio r in Fig. 5 is given by r = (TD+TR)/TK , where
TD, TR, and TK represent the data download time, data read-
back time, and kernel execution time, respectively. As we
increase r, the performance bottleneck moves from kernel
execution to data transfer. In general, the least upper bound
on the speedup reaches a factor of two when r = 100 and
D = 1. We controlled the transfer ratio r by changing the
element size |ei| while fixing TK . We used the FCFS rule
because the chunk size was fixed during program execution.

As shown in Fig. 5 (a), when r = 100 and D = 1, GPU-
chariot achieves a speedup of 1.9. This speedup is close to
the least upper bound, and is also nearly equal to the one

achieved by a manually pipelined version, which first issues
all downloads, then invokes all kernels, and finally calls the
readback functions. In this case, we cannot observe the run-
time overhead of GPU-chariot.

The speedups in Fig. 5 (a) increase linearly with the
number of GPUs, D, when r ≤ 50. Because these speedups
are larger than D, we demonstrate an efficient use of over-
lap. In contrast, when r = 100 and D ≥ 3, a similar linear
increase in speedups is not observed. In particular, when
we increase r above 60%, speedups for D ≥ 3 decrease.
We can attribute this decreasing behavior to the reduced ef-
ficiency of overlap, i.e., shared I/O buses frequently increase
the waiting time on GPUs, whereas this overhead does not
occur if GPUs occupy their own I/O bus (D ≤ 2). Consid-
ering this waiting time for D = 4 and r = 100, the execu-
tion time of the kernel is not long enough to fully mask the
data transfer and waiting times. In contrast, the execution
time of the kernel for D = 4 and r = 50 is long enough to
cover them, thus yielding a superlinear speedup. Note here
that decreasing speedups do not always mean performance
degradation. In fact, by adding two GPUs, GPU-chariot re-
duces the execution time for r = 100 from 1,503 ms (D = 2)
to 1,411 ms (D = 4).

As shown in Fig. 5 (b), the OpenMP version success-
fully utilizes all four GPUs when r = 10. However,
speedups for D ≥ 3 decrease as we increase r, because
this version uses a single CUDA stream per device, which
cannot overlap kernel execution with data transfer. Thus,
OpenMP code with cudaSetDevice is simple but fails to
achieve pipelined execution on pre-GK110 architectures.
Due to similar reason, speedups for D ≤ 2 are at most
D for all r. A full overlap of kernel execution and data
transfer requires (1) multiple CUDA streams per device,
and for all GPU architectures except GK110, (2) out-of-
order execution. Because OpenMP is designed for writing
multithreaded CPU code, it cannot assist programmers in
achieving these two points. Consequently, we think that
OpenMP is useful to develop multi-GPU applications rather
than stream applications. In contrast, GPU-chariot provides
a simple programming interface that hides not only CUDA
streams but also an appropriate order for CUDA function
calls from the application code.
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(a) (b) (c) (d)

Fig. 6 Overheads over a lower bound. (a) Results for fixed chunk sizes when using the FCFS rule. Results for random
chunk sizes when using (b) the FCFS rule, (c) the LF rule, and (d) the SF rule.

(a) (b)

Fig. 7 Speedups over the FCFS rule with random chunk sizes. (a) Results for the LF rule. (b) Results for the SF rule.

Figure 6 shows the overheads of GPU-chariot, which
illustrate the efficiency of the produced schedules. Here
overhead ε is given by ε = T/TLB − 1, where T is the
execution time and TLB represents the lower bound (de-
scribed in Appendix C). This lower bound assumes that if
kernel execution dominates the performance, tasks are as-
signed equally to GPUs. Conversely, if data transfer dom-
inates the performance, tasks are flown equally on buses.
The overhead can be minimized to ε = 0 if both the first
download time and last readback time are minimized and the
bottleneck stage is kept busy continuously (i.e., full over-
lap is achieved). As shown in Fig. 6 (a), in most cases,
GPU-chariot achieves ε ≤ 5, and almost no overhead when
r ≤ 40.

However, overhead ε reaches 20% when D = 3. This
increase occurs because the assumption mentioned above
does not fully apply to the 3-GPU configuration. In partic-
ular, we connected two GPUs to a single bus, and the third
GPU to the remaining bus. In this case, as mentioned above,
the two GPUs connected to the same bus cannot use ker-
nel execution to fully hide data transfer when r ≥ 60. In
contrast, the remaining GPU has a dedicated bus, and thus
achieves full overlap by processing more tasks than the two
GPUs. Consequently, the third GPU processes 18 tasks dur-
ing execution and 16 tasks in lower bound analysis (r = 70).
Thus, software pipelines in 3-GPU systems can have dif-
ferent performance bottlenecks depending on the transfer
ratio r. By taking into account the number of actually as-
signed tasks, the overhead ε reduces from 24% to 11% when
r = 70. Although pipelines have different bottlenecks when

r = 60, as we increase r to 100%, they all have the same
bottleneck of data transfer. This explains why overhead ε
decreases as we increase r above 70%.

We next measured the overhead ε for random chunk
sizes (Fig. 6 (b)–(d)). We modified the kernel such that it
can change chunk sizes at runtime. We also executed the
kernel using the LF and SF rules, in addition to the FCFS
rule. Figure 6 (a) and (b) indicate that for random chunk
sizes, the use of the FCFS rule causes an increase in the
overhead. For nonuniform chunks, the use of the FCFS rule
results in a drop in the overlap efficiency because small ker-
nel execution is masked with large data transfers. Therefore,
kernels cannot be executed continuously on the GPU, thus
causing the bottleneck stage to be idle. In contrast, the LF
and SF rules have smaller overheads than the FCFS rule,
as shown in Fig. 6 (c) and (d). Consequently, both rules are
faster than FCFS by at most 20% (Fig. 7). Thus, our sorting
strategy contributes in increasing the efficiency of pipelined
execution for random chunk sizes. These results also imply
the importance of changing the order of task execution at
runtime, which is not supported by the Hyper-Q technology.

Figure 6 (c) and (d) indicate that the LF rule is faster
than the SF rule. The former rule allows the smallest task
to be processed at the end of execution. Thus, the LF rule
minimizes the unmaskable time (i.e., the last readback time)
that appears at the end of execution. In contrast, as we men-
tioned in Sect. 5.2, the SF rule maximizes the last readback
time. Moreover, the unmaskable time appears at the begin-
ning of execution (i.e., the first download time). Minimiz-
ing the first download time requires a blocking mechanism
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(a) (b)

Fig. 8 Speedups of sequence alignment over a nonpipelined version. The LF rule was used for measurement. (a) Results
for GPU-chariot. (b) Results for OpenMP.

to buffer all tasks before starting the scheduling procedure.
Since this blocking approach results in delaying execution,
we do not adopt it.

6.2 Case 1: Amino Acid Sequence Alignment

As a case study, we used a biological application that
iteratively performs local alignment of amino acid se-
quences [26]. This application requires two inputs, namely
a query sequence and a database of amino acids, and returns
similarity scores between the query sequence and subject se-
quences in the database. In order to overlap disk access with
kernel execution, the original code divides the database into
chunks [26]. These chunks are processed in a pipeline of
five stages: file read, data download, kernel execution, data
readback, and file write. Moreover, we used our callback
interface to integrate the file read and write stages into the
pipeline.

The database [29] contains 536,029 subject sequences,
while each chunk contains 8,192 subject sequences. Conse-
quently, a query sequence involves N = 66 tasks that require
alignment. The length of a subject sequence ranges from 2
to 35,213 amino acids, with an average of 755 amino acids
per sequence. Thus, chunks have different total lengths. Be-
cause task granularity is nonuniform, we selected to apply
the LF rule during measurements. For experiments, we used
8 query sequences of different lengths, ranging from 63 to
511 amino acids. As shown in Table 1, for short queries,
the file read stage dominates the performance, whereas for
long queries, the kernel execution stage dominates the per-
formance.

Figure 8 shows speedups of our pipelined code over
a nonpipelined version. For the shortest query of 63
amino acids, GPU-chariot achieves a speedup of 1.4 times
(Fig. 8 (a)). This speedup is the same as that achieved by a
manually pipelined version, which performs in-order execu-
tion. However, because for short queries, the file read and
write stages are the performance bottleneck, the speedup
does not increase with the number of GPUs, D, as shown
in Table 1. Thus, multi-GPU solutions are not effective for
situations with intensive I/O operations. A similar behavior
is observed with the OpenMP version (Fig. 8 (b)).

In contrast, speedups for long queries increase with
the number of GPUs, because the bottleneck stage is effec-

Table 1 Breakdown of execution time for sequence alignment.

Stage

Short query (length: 63) Long query (length: 511)

Execution Ratio Execution Ratio

time (s) (%) time (s) (%)

File read 1.90 63.4 1.90 17.0

Download 0.05 1.6 0.05 0.4

Kernel 0.80 26.6 8.18 73.3

Readback 0.03 1.0 0.23 2.1

File write 0.22 7.4 0.80 7.2

Total 2.99 100.0 11.17 100.0

tively accelerated with multiple GPUs. The speedup reaches
a factor of 4.1 when using D = 4 GPUs for the longest
query of 511 amino acids. Similarly, the speedups of the
OpenMP version increase as we increase the length of query
sequence, but the highest speedup is below a factor of 3.
Figure 8 (a) also demonstrates the effectiveness of our out-
of-order execution scheme for long queries. For the query
of 511 amino acids, our pipelined code is 7% faster than the
manual version when D = 1.

Finally, this biological application implies that both the
pure CUDA approach and the hybrid approach of OpenMP
and CUDA require a complicated code to overlap the file
write stage with other stages. Because the file write stage is
a CPU execution stage, it cannot be associated with CUDA
streams directly. In this case, we have to ensure that, for
each task, the file write stage begins after the completion of
the data readback stage. A naive method for achieving this is
to call the cudaMemcpy function, but this synchronous func-
tion prevents pipelined execution. GPU-chariot internally
solve this issue by the callback interface. Our GPU-chariot
runtime calls the cudaMemcpyAsync function and monitors
the execution progress by the cudaStreamQuery function
to process the CPU execution stage immediately after com-
pleting the data readback stage. Although this mechanism is
complicated, our GPU-chariot runtime hides the mechanism
from the application code.

6.3 Case 2: SETI Spectrometer System

We next applied GPU-chariot to a SETI spectrometer sys-
tem [16], which iteratively applies the 2-D FFT to matrices
of 8192 × 8192 complex numbers. Since each matrix is too
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Table 2 Breakdown of execution time for a spectrometer system.

Stage

Column FFT phase Row FFT phase Total

Execution Ratio Execution Ratio Execution Ratio

time (ms) (%) time (ms) (%) time (ms) (%)

Download 131.6 49.3 131.6 50.6 263.2 49.9

Kernel 18.3 6.9 11.5 4.4 29.8 5.7

Readback 117.0 43.8 117.0 45.0 234.0 44.4

Total 266.9 100.0 260.1 100.0 527.0 100.0

Fig. 9 Speedups of a spectrometer system over a nonpipelined version.
The FCFS rule is used for measurement. Manual results for D ≥ 2 are not
available.

large to store in device memory, it is divided into N = 16
submatrices. During the first phase, each matrix is divided
into 16 submatrices of 512 × 8192 elements, and then a 1-D
FFT is performed on each column (Fig. 1). During the sec-
ond phase, the intermediate matrix is divided into 16 subma-
trices of 8192 × 512 elements, and a 1-D FFT is performed
on each row using the CUFFT library [25]. Because chunks
have the same data size, we used the FCFS rule for evalu-
ation. Table 2 shows the breakdown of the execution time.
Because the download and readback stages consume 94% of
the execution time, the performance bottleneck of this sys-
tem is the data transfer.

Figure 9 shows speedups over a nonpipelined version.
Both GPU-chariot and manual versions increase the perfor-
mance on a single device (D = 1) by approximately 5%.
These results are reasonable because the kernels consume
only 6% of the execution time (Table 2). In contrast, the
OpenMP version fails to achieve this overlap. Even when
we increased the number of GPUs, the speedups did not in-
crease significantly beyond a factor of two. Since the two
PCIe buses in our experimental machine are shared, the I/O
bus limits the performance of this data-intensive application.
Thus, if data transfer dominates the execution time, multi-
GPU solutions cannot achieve a linear speedup beyond B.

7. Conclusion

We have presented a stream programming framework called
GPU-chariot, which is capable of out-of-order execution of
CPU functions, CUDA kernels, and data transfers on multi-
GPU systems. GPU-chariot reduces development efforts
needed for task scheduling, resource allocation, and CPU
thread management. Using GPU-chariot, programmers can
easily develop a host code that constructs software pipelines
that lay over an arbitrary number of GPUs and CPUs. Our
GPU-chariot runtime maximizes the efficiency of pipelined

execution by sorting tasks in a descending order of granular-
ity. With respect to the programmability, GPU-chariot pro-
vides a simple programming interface that hides not only
CUDA streams but also an appropriate order for CUDA
function calls from the application code.

Through experimentation, we showed that our auto-
mated code achieves high performance, close to the least
upper bound of the speedup. For random size data, our out-
of-order code runs up to 20% faster than the manual code
that performs in-order execution. Two case studies demon-
strate that GPU-chariot can be applied to stream applications
that have various pipeline stages, such as CPU functions and
CUDA-based functions of third-party libraries.

Future work would include evaluation of GPU-chariot
on the latest GK110 architecture.
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Appendix A: Stream Processing with CUDA

The CUDA programming model assumes that the host and

device (i.e., the CPU and GPU) have their own separate
memory spaces, called host memory and device memory,
respectively. Therefore, CUDA applications usually consist
of two types of source codes, namely the host code and de-
vice code. The host code runs on the CPU to invoke the
device code (i.e., the kernel function) on the GPU and to
transfer I/O data streams between host memory and device
memory.

A CUDA stream can be defined by creating a stream
object, as shown in line 9 of Fig. A· 1. In this example,
a task contains download, kernel execution, and readback
commands. Moreover, N tasks are processed using S CUDA
streams in a round-robin fashion. As shown in Fig. A· 2 (a),
we can use multiple CUDA streams to overlap data transfer
with kernel execution. However, because of implicit syn-
chronization, mentioned in Sect. 3.2, on most GPUs, the

Fig. A· 1 Naive host code of stream processing. This example uses S
CUDA streams to process N tasks on a single-GPU system.

Fig. A· 2 Timeline view of (a) overlapping execution and (b) nonoverlap-
ping execution of commands on a single GPU with a single DMA engine.
In overlapping execution, the GPU is kept busy, whereas in nonoverlap-
ping execution, the GPU waits for the initiating data to be downloaded.
Both cases use two CUDA streams to process four tasks.
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code in Fig. A· 1 results in nonoverlapping execution, as
shown in Fig. A· 2 (b). In this example, the first readback
command from CUDA stream #1 is issued before the first
download command from CUDA stream #2. Thus, the for-
mer command prevents the latter from being overlapped
with kernel execution.

The host code in Fig. A· 1 becomes more complicated
for multi-GPU systems, because it must be multi-threaded
to process multiple tasks on CPU cores. Note that CUDA
4.0 and later allow CPU threads to access all GPUs in the
system, hence removing the limitation of one-CPU-thread-
per-GPU. However, multi-threaded host code is essential in
constructing multiple software pipelines, which parallelize
CPU stages to run stream applications efficiently on multi-
GPU systems. For details, see the cudaOpenMP code in the
GPU Computing SDK [28].

Appendix B: Scheduling Algorithm

Our parallel scheduling threads process the online algorithm
presented in Algorithm 1. The algorithm produces an online
schedule from five inputs: device ID d (0 ≤ d ≤ D − 1), the
number of CUDA streams S , the number of pipeline stages
K, the task buffer Q, and a set V = {L,G} of local and global
vectors.

During thread creation, each thread independently ini-
tializes data structures for the k-th stage, where 1 ≤ k ≤ K.
Each data structure includes a shared priority queue Pk, ac-
tive CUDA stream ID Wk, local counter Ck.local, and global
counter Ck.global. In line 8, created threads also initial-
ize the active task ID Aj. This variable stores the ID of
the active task that is currently assigned to CUDA stream
j, where 1 ≤ j ≤ S . Since all variables except priority
queues and global counters contain per-device information,
each scheduling thread stores them as local, private vari-
ables.

After this initialization phase, parallel threads start to
independently circulate pipeline stages until they process
all tasks buffered before a synchronization request. First,
the threads call the task selection() function to choose an
overlappable command f at the k-th stage. If such a com-
mand exists, the threads execute the four steps presented in
Sect. 5.4.

Algorithm 2 shows the algorithm implemented in the
task selection() function. In order to select an overlappable
command f at the k-th stage, this function first searches idle
CUDA streams in a cyclic manner. If the idle CUDA stream
does not have a task, it then assigns a task from the task
buffer Q. Otherwise, it checks if the head command f in
the queue can be overlapped with a running command. This
investigation is performed by the canOverlap() function, ac-
cording to conditions (a), (b), and (c) in Sect. 5.3. If the
task selection() function is called before resources are allo-
cated (i.e., if pop is set to false), this function simply returns
the overlappable command f , which is then used in the re-
source allocation request. Otherwise, the thread is allowed
to dequeue command f for execution. In this case, the func-

Algorithm 1 Scheduling algorithm(d, S ,K,Q,V)
Input: Responsible device ID d, number S of CUDA streams, number K

of pipeline stages, task buffer Q, and set V = {L,G} of local and global
vectors.

Output: An online schedule.

1: for k ← 1 to K do � for each pipeline stage
2: Set Pk be an empty queue � shared priority queue
3: Wk ← 0 � active CUDA stream ID
4: Ck.local← 0 � local counter
5: Ck.global← 0 � shared global counter
6: end for
7: for j← 1 to S do
8: A j ← NULL � active task on CUDA stream j
9: end for

10: A ← {A1, A2, . . . , AS }
11: Initialize K × K matrixM by hardware inspection � defines

overlappable stages
12: Synchronize all scheduling threads
13: while Q is not empty or synchronization not requested do
14: for k ← 1 to K do � for each pipeline stage
15: 〈 f (args), j〉 ← task selection(S , Q,A,M, k, Wk, Ck, V , false)
16: if d � Pk and f � NULL then
17: Enter critical section
18: Enqueue d to Pk � request resources
19: Leave critical section
20: end if
21: if d = the head of Pk then
22: 〈 f (args), j〉 ← task selection(S , Q, A, M, k, Wk, Ck, V ,

true)
23: if f � NULL then
24: Ck.local← Ck.local + 1
25: Enter critical section
26: Ck.global← Ck .global + 1
27: Leave critical section
28: Wk ← j � update active stream ID
29: Dispatch f (args) to CUDA stream j
30: end if
31: end if
32: if CUDA stream Wk is idle then � command completed
33: Ck .local← Ck.local − 1
34: Enter critical section
35: Ck .global← Ck.global − 1
36: Dequeue d from Pk � release resources
37: Leave critical section
38: end if
39: end for
40: end while

tion task selection() returns a pair 〈 f (args), j〉, where f is
the selected command, args is its arguments, and j is the
CUDA stream to be used for execution.

Appendix C: Lower Bound Analysis

Without loss of generality, we assume that chunks are sorted
in ascending order of data size: for all 1 ≤ i, j ≤ N, i ≥ j⇒
|ei| ≥ |e j|. Let di, ki, and ri be the data download time, kernel
execution time, and data readback time, respectively, for the
i-th chunk (1 ≤ i ≤ N).

Our lower bound on the execution time, TLB, is given
by

TLB = min(T1,T2), (A· 1)

where T1 represents a lower bound on execution time as-
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Algorithm 2 Task selection(S ,Q,A,M, k,Wk,Ck,V, pop)
Input: Number S of CUDA streams, task buffer Q, set A =

{A1, A2, . . . , AS } of active tasks, matrix M, stage ID k, active CUDA
stream ID Wk, local and global counters Ck, local and global vectors
V , and boolean value pop.

Output: Pair 〈 f (args), j〉 of executable function f (args) and CUDA
stream ID j.

1: for i← Wk to Wk + S − 1 do
2: j← i mod S
3: if CUDA stream j is idle then
4: Enter critical section
5: if A j = NULL and Q is not empty then
6: A j ← Q.pop front() � task assignment
7: end if
8: Leave critical section
9: if A j � NULL and A j.queue is not empty then

10: f ← the head of A j.queue
11: if canOverlap( f ,M,Ck,V) and Command f processes the

k-th stage then
� canOverlap() returns true if f satisfies conditions (a),

(b). and (c) in Sect. 5.3.
12: if pop then
13: f (args)← A j.queue.pop front()
14: if A j.queue is empty then
15: A j ← NULL � task finished
16: end if
17: end if
18: return 〈 f (args), j〉
19: end if
20: end if
21: end if
22: end for
23: return 〈NULL, 0〉 � no command left

suming that data transfer dominates the performance, and
T2 represents a lower bound on execution time assuming
that kernel execution dominates the performance. In both
cases, the execution time is minimized when the bottleneck
stage is kept busy continuously, and both the first download
time and the last readback time are minimized.

In cases where data transfer dominates the perfor-
mance, we assume that N tasks are equally flown on B buses.
Then, T1 is given by

T1 =

N∑

i=1

(di + ri)/B. (A· 2)

Conversely, for kernel dominant cases, T2 is given by

T2 = Thead + Tbody + Ttail, (A· 3)

where Tbody represents the sum of kernel execution times,
namely the fully masked part, as shown in Fig. A· 3. In ad-
dition, Thead and Ttail represent the unmaskable parts that
appear at the beginning and end of execution, respectively.
With respect to Tbody, we assume that N tasks are equally
assigned to D GPUs. Therefore, Tbody is given by

Tbody =

N∑

i=1

ki/D. (A· 4)

Thead and Ttail are given by

Thead =


D/B�∑

i=1

di, (A· 5)

Fig. A· 3 Timeline view of multi-GPU execution. In this example, two
GPUs share a single bus. GPU #2 delays the execution because it is blocked
until GPU #1 completes the first data download.

Ttail = r1. (A· 6)

Note that Eq. (A· 5) considers the delay of kernel execution.
This delay is due to the shared bus, which causes waiting
time for GPUs, as shown in Fig. A· 3.
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