
Evolving fault-tolerance in Hadoop
with robust auto-recovering JobTracker

Nobuyuki Kuromatsu
The Graduate School of

Information Science and Technology of
Osaka University

Osaka, Japan 565–0871
Email: n-kuromt@ist.osaka-u.ac.jp

Masao Okita
The Graduate School of

Information Science and Technology of
Osaka University

Osaka, Japan 565–0871
Email: n-kuromt@ist.osaka-u.ac.jp

Kenichi Hagihara
The Graduate School of

Information Science and Technology of
Osaka University

Osaka, Japan 565–0871
Email: hagihara@ist.osaka-u.ac.jp

Abstract—Hadoop is a popular open source software for sup-
porting a large scale distributed data processing. While it achieves
high reliability, the job scheduler, named JobTracker, remains the
single point of failure. If the JobTracker fails to stop during a job
execution, the job is canceled immediately and all of intermediate
results are lost. We propose an auto-recovery system against the
fail-stop without additional hardware. Our recovery mechanism
is based on a checkpoint method. A snapshot of the JobTracker is
stored on a distributed file system periodically. When the system
detects the fail-stop by using timeout, it automatically recovers
the JobTracker by a snapshot. The key feature of our system
is a transparent recovery such that a job execution continues
during a temporary fail-stop of the JobTracker and completes
itself with a little rollback. The system achieves fault-tolerance
for the JobTracker with overheads less than 4.3% of the total
execution time. It reduces the reassigned tasks caused by a
rollback compared to a naı̈ve rollback.

Index Terms—Fault-torelance, checkpoint and recovery,
Hadoop, master-worker

I. INTRODUCTION

Recently, MapReduce programming model[1] has become
a promising paradigm for a parallel and distributed large
data processing. Hadoop[2] is a master-worker framework
that supports an implementation of MapReduce on a cluster
environment. Many companies like IBM, Amazon, Yahoo!,
etc. apply Hadoop to Big data[3] analysis since it enable us
to process huge data, tens of terabytes to petabytes, with low
cost and high performance.

Hadoop has two master-worker systems. The first system
is MapReduce framework (MRFW), that processes large data
on many machines. The other is Hadoop distributed file
system (HDFS), specialized in handling large data stream.
Each system consists of a single master and multiple workers.

A key feature of Hadoop is high reliability. A parallel
and distributed system requires fault-tolerance against machine
failure[4]. Since processing huge data requires many machines
and a long time execution, the probability that one of machines
causes failure is relatively high. In order to achieve fault-
tolerance, Hadoop multiplexes workers of both HDFS and
MRFW. Besides, Hadoop stores an image file of HDFS
periodically against failure on the master of HDFS.

However, JobTracker (JT), the master of MRFW, remains
the single point of failure in Hadoop. Original developers

assume that fault-tolerance for the JT is unnecessary because
the specific single node in a machine cluster, namely JT, rarely
fails to stop in general. If a job unexpectedly terminates, a
user requires restarting the job from the beginning. Therefore,
a failure after processing almost of an execution causes
enormous unnecessary time to obtain the result. It makes it
difficult to apply Hadoop to time-critical applications, such as
core banking solutions.

NTT DATA reported a document[5] about fault-tolerance
for the JT. They apply Kemari software FT[6] to Hadoop.
They execute Hadoop on a cluster of virtual machines (VM).
To achieve fault-tolerance for JT, the VM which invokes
the JT process synchronizes its memory with a spare VM.
When the machine that the primary VM runs on fails to stop,
Kemari migrates the JT process to the spare VM instantly.
Hadoop continues to execute a job without detecting the
failure. However, Kemari requires additional machine and
network between the primary VM and the spare VM for
memory synchronization. Moreover, Kemari does not tolerate
for software failure because memory contents of the primary
VM and the spare VM are exactly the same. The system
tolerates for only single failure since the number of spare VM
is one for each VM.

In this paper, we propose an auto-recovery system for the
JT in order to apply Hadoop to applications that expect a
job completion in fixed time. To achieve user-transparent
fault-tolerance for JT, we implement two techniques based
on Hadoop 0.20.2. The first is checkpoint and recovery for
the JT. Our system also reconstructs the new JT according to
states of TaskTrackers to avoid rolling them back. Secondly,
we use timeout mechanism in order to detect failure on the JT
automatically. Note that users require no modification of their
programs to apply our system.

Comparing to the system proposed by NTT DATA, our
auto-recovery system requires no additional hardware. Our
system tolerates for not only hardware failure but also software
failure. It also allows repeatedly fail-stop of the JT. However,
it causes the overheads of checkpoints duration execution and
the overheads of recovering the JT at a failure.

The rest of this paper is organized as follows. Section II
introduces the overview of Hadoop. Section III and Section IV

 
Bulletin of Networking, Computing, Systems, and Software – www.bncss.org, ISSN 2186–5140 
Volume 2, Number 1, pages 4–11, January 2013

- 4 -



TaskTracker

Task

Result

TaskTracker

Task Task

TaskTracker

Task Task

JobTracker
(1)Heartbeat message

with request for

a new task

Heartbeat

message

(2)Assign

a new task 

Local disk

Fig. 1. An overview of task processing between the JobTracker and
TaskTrackers. The size of task slot is two.

describes our goal and our auto-recovery system, respectively.
In Section V, we show the experimental results. Section VI
concludes the paper.

II. HADOOP

Here, Namenode (NN) and Datanode (DN) are a master
process and a worker process of HDFS, respectively. Task-
Tracker (TT) is a worker process of MRFW. A pair of a DN
and a TT runs on each machine node in a cluster and works
collaboratively. On the other hand, there is the single pair of
the NN and the JT in the cluster.

A. HDFS

HDFS scales its performance of loading and storing data
depending on the number of DNs. HDFS divides data which a
user intend to write into multiple certain sizes of data, called
split. The NN assigns each split to a DN and manages the
relation between the split and the DN. A DN stores assigned
splits to local disk of the node on that the DN is running.
When a user intends to read data, the NN gathers the splits
which compose the data from DNs.

HDFS has fault-tolerance for both a DN and the NN. HDFS
replicates splits to multiple DNs and stores a file image of
the NN against a failure[7]. Since HDFS provides atomic
operations, no data corruption occurs during writing.

B. MapReduce

MRFW divides a job into multiple tasks to execute them
on distributed nodes in parallel. The JT schedules tasks and
assigns them to TTs in consideration of data locality. A user
sets the size of task slot, namely the number of tasks executing
at once on each TT, through a configuration file of Hadoop. A
TT sends a message, called heartbeat, to the JT periodically
during a job execution to inform the progress of the tasks.
If a TT completes a task, the TT sends a request for a new
task within a heartbeat (Figure 1 (1)). When the JT receives
a heartbeat including the request, it assigns a new task to the
TT by replying of the heartbeat (Figure 1 (2)).

MapReduce tasks are classified into two types, MapTask
and ReduceTask. A MapTask processes a split on HDFS and
stores the result to local disk. A ReduceTask gathers a part
of the result from each MapTask and summarizes them. A

ReduceTask stores the result to HDFS. MRFW allows the
JT to assign a redundant task to multiple TTs as a backup
task. Backup tasks run on different nodes concurrently. The JT
accepts the result of the first task to complete so that it could
avoid waiting for the task completion which a low performance
node executes.

MRFW has fault-tolerance for a TT. If a TT sends no
heartbeat to the JT for a certain period, JT decides that the TT
fails to stop. Then the JT reassigns the tasks that the failed
TT has executed to other TTs.

If the JT fails to stop, MRFW terminates a job execution
immediately. As long as the input data for the job is available
on HDFS, a user can restart the job by rebooting JT process.
Although partial results of tasks in the last execution remain
on HDFS or local disk on each node, the JT ignores them and
assigns the all tasks to TTs again.

III. OUR GOAL

In this study, we intend to complete job executions in fixed
time even if the JT fails to stop. We provide completely
automatic recovery from a failure so that users should not have
to worry about whether the failure occurs. We also design the
recovery system to minimize increase of the execution time of
a job.

We assume a failure on the JT as a situation that the JT
cannot reply to a heartbeat from TTs. The failure includes
an unexpected termination of the JT process, an accidental
shutdown of the node that the JT is running on, and a lost
connection to the JT. We also assume that a failure probably
repeats during a job execution but multiple failures do not
occur at once.

We consider that HDFS has enough fault-tolerance. The NN
and the JT generally run on the same node, but we execute
the NN on a different node to avoid that a failure on the JT
also terminates the NN. In this paper, we assume no failure
occurs on the node that the NN runs on.

IV. THE PROPOSED SYSTEM

We consider the following two popular methods to achieve
fault-tolerance for JT.

The first method is duplication. It multiplies the JT on
distributed nodes. If the primary JT fails to stop, it is au-
tomatically or manually switched to a redundant JT. To keep
consistency among multiple JTs, the method requires period-
ically synchronization during job execution. An advantage of
this method is instant recovery from a failure. By contrast,
a disadvantage is that it wastes computational resources and
hardware for redundant JTs even if no failure occurs. Toler-
ance for multiple failures requires more wasted resource and
hardware.

The second method is checkpoint and recovery. It periodi-
cally creates a snapshot of the current JT state and stores it to
a storage. If the JT fails to stop, a new JT starts up and restores
the state before the failure according to a snapshot. Although
this method requires larger time for the recovery than the first
method, it requires less additional resources and hardware.

- 5 -



We decide to use a checkpoint method because we focus on
saving resources rather than instant recovery. A recovery time
increases little execution time because all TTs continue oper-
ations during a failure and recovery. A checkpoint tolerates a
failure of multiple times without additional hardware.

To construct an auto-recovery system for the JT, we imple-
ment three mechanism based on Hadoop: checkpoint on the
JT, automatic detection of failure on the JT and recovery of
the JT from failure.

A. An issue in checkpoint and recovery

Checkpoint and recovery approach usually requires a roll-
back. A rollback is an operation that returns the whole of
system to the normal state at the last checkpoint. It abandons
the operations that are executed during a period from the
last checkpoint to a failure. The system must execute the
abandoned operations again.

A rollback increases the execution time. In our proposed
system, the JT requires rolling back for restoring the clean
state. A naı̈ve approach also rolls all TTs back to simplify
keeping of the consistency between JT and them. Re-execution
of the tasks abandoned by the rollback increases the execution
time.

We focus on that TTs continue processing normally even if
the JT temporary fails to stop. TTs should not be abandoned
because they seem to be in normal state rather than a JT in
failure. Therefore, we reconstruct the state of a new JT instead
of rolling all TTs back.

B. Checkpoint on the JT

To reduce the size of a snapshot, we make a snapshot
include minimum information necessary. Task scheduling on
the JT requires the status of tasks (unassigned, processing, and
completed), the status of TTs (busy or idle), the assignment
table of tasks, and data allocation on HDFS. The JT should
own the status and the assignment table because the NN
provides information for data allocation. Therefore, a snapshot
consists of only the status and the assignment table (see
Appendix A for details). The JT owns other information, but
they can be reconstructed from the environment and static
configurations.

We implement event-driven checkpoint scheme rather than
periodic checkpoint scheme. To decrease the overheads of
checkpoints, we intend to decrease the frequency of check-
points. We let the JT generate a snapshot whenever N tasks
completed. A user can set N through a configuration file of
Hadoop.

We also decide to store snapshots to HDFS because HDFS
provides high availability and reliability. Data on HDFS is
accessible from the all nodes, so that it allows all nodes to
recover the JT with a snapshot. Besides, HDFS achieves fault-
tolerance for the data by replication. A snapshot is available
even if one replica is corrupt, one node causes failure or a part
of network is unavailable.

Note that storing data to a storage requires serialization.
Loading data from a storage also requires deserialization.

HDFS

Snap

shot

Candidate List

TaskTracker-A

TaskTracker-B

TaskTracker-C

TaskTracker-A invokes

new JobTracker

New 

JobTracker

JobTracker

Task

Tracker-A

Task

Tracker-B

Task

Tracker-C

Fig. 2. An overview of switching JobTracker. After TaskTrackers detect a
failure on JobTracker, they load the candidate list. The TaskTracker registered
top of the list terminates itself and invokes a new JobTracker.

The serialization and deserialization of a snapshot increases
the overheads of checkpoints and recovery. We discuss the
overheads later in V-A.

C. Automatic detection of failure

We implement a timeout mechanism on a TT to detect
failure on the JT automatically. Automatic detection generally
uses heartbeat messages between two servers. We focus on a
heartbeat between the JT and a TT originally implemented in
Hadoop. If a TT fails to send a heartbeat to the JT for M
times, the TT recognizes the JT fails to stop. After recovery
of the new JT, TTs switch the destination of heartbeats to the
new JT.

Note that a timeout mechanism may cause a misdetection
due to temporary network congestion and other reasons. The
misdetection divides a cluster into two node group: a group of
TTs that detect a ghost failure and a group of TTs that detect
no failure. The former group invokes a new JT to resolve the
ghost failure. After that, the TTs in the former group send
a heartbeat to the new JT. On the other hand, the original
JT misunderstand these TTs in failure because it receives no
heartbeat from them. As a result, the original JT assigns tasks
to only the TTs in the latter group. Thus the misdetection
degrades performance of job execution.

To avoid this performance degradation, we force the new
JT to terminate the old JT. However, this method causes a
redundant recovery every misdetection. We should detect a
failure according to the majority in future work.

D. Recovery from failure

When our system detects the JT in failure, a specific TT
terminates itself and invokes a new JT process. The new JT
then loads the last snapshot from HDFS to recover the state
of the old JT (Figure 2). Lack of one TT causes no serious
problem for job executions due to the fault-tolerance for TT,
but it decreases execution efficiency.

- 6 -



t

JT

Type 1

Type 2

Type 3

Type 4

Type 5

Type 6

Checkpoint Failure Recovery

Assigned Completed

Task

Fig. 3. The abandoned tasks by a rollback in naı̈ve recovery approach.
Timing of the assignment and the completion classify the tasks into six types.

Our system decides the TT that becomes a new JT according
to a candidate list. The candidate list is a list of nodes on which
a TT runs. The JT initializes the list at its start up and registers
TTs to it in order of heartbeat arrival.

To be accessible from all TTs even with failure, the list is
stored to HDFS as same as a snapshot.

Each TT detects a failure and then loads the list from HDFS
independently. Here we call the top of the list the candidate
node. The TT that runs on the candidate node becomes the
new JT. If the candidate node is also down, the second of the
list becomes next candidate node. The other TTs wait for a
second and then tries to switch the destination of a heartbeat to
the candidate node repeatedly. If TTs fails to switch for certain
times, they try to switch the destination to the second candidate
node. Thus, all TTs find the new JT without synchronization.
This is an advantage of our system in terms of scalability.

Note that our system does not affect HDFS because the DN
on the candidate node remains after recovery.

1) Continuing job execution: The original MRFW intends
to cancel a job execution when it faces failure on the JT
although the other processes is still running. The cancelation
is due to JobClient, the gateway between users and MRFW.
A user submits a job and confirms the progress of it through
JobClient. JobClient requires a report of the progress from
the JT periodically during job execution. If JobClient fails to
receive the report, it immediately cancels to execute a job. It
also cancel our recovery operation at that time.

To prevent this, we modify the implementation of JobClient.
JobClient sends a dummy report to itself during recovery.
After the candidate node invokes a new JT, the new JT sends
a request for switching to JobClient. JobClient confirms the
request by comparing to the candidate list and then switches
a source of reports to the new JT.

2) Reconstructing the JT for transparent recovery: Since
TTs continue operations during failure and recovery, infor-
mation owned by the new JT based on the last snapshot
probably conflicts that owned by TTs. As mentioned before,
a naı̈ve approach to avoid the conflict is rolling all TTs
back. In contrast, our system directly resolves the conflict by
reconstructing the new JT according to information from TTs

to minimize the increase of the execution time.
Firstly, the new JT reconstructs the status of tasks before

restarting the original operations. Target tasks are that TTs are
executing in a period from the last checkpoint to the recovery
of the new JT. Timing of the assignment and the completion
classify the tasks into six types as shown in Figure 3. A task of
type 3 causes no conflict because the JT accurately recognizes
both the assignment and the completion. A task of type 2 also
causes no conflict. The new JT recognizes the completion of
the task even after recovery because the TT that completes the
task sends a heartbeat to notice the completion repeatedly. In
the case of the other types, a heartbeat from the TT includes
a different task progress from that the new JT recognizes,
resulting in conflict.

To resolve the conflict, we extend a TT to notify the current
status of assigned tasks to the new JT just after recovery.
The new JT changes its recognition according to the notices.
If the notices include tasks of type 1 and type 4, the new
JT recognizes they are completed. If they also include tasks
of type 5 and type 6, the new JT recognizes they are in
processing. As a result, type 5 and type 6 seem to be the
same as type 2 and type 3, respectively. A task of type 5 and
type 6 therefore no longer cause a conflict.

However, we have to re-execute the tasks executed on the
candidate node. Since the TT on the candidate node has been
terminated, it no longer completes tasks and notifies their
completion. After reconstructing, the new JT reassigns the
tasks to arbitrary TTs.

Secondly, TTs that execute ReduceTask also reconstruct
their own information. Each ReduceTask has a list of com-
pleted MapTasks for gathering the result of completed tasks.
To update the list, a ReduceTask periodically sends a request
to the JT with the last index of the list. The JT replies to
the request with a part of its own list after the index in the
request. This algorithm assumes that the order of the list is
the same between the JT and ReduceTasks. However, after
rolling the JT back, this algorithm causes an error because the
order is probably difference. To avoid the error, a ReduceTask
synchronizes its own list to that of the JT when the TT sends
the first heartbeat to the new JT.

V. EVALUATION

This section shows experiments for evaluating overheads of
our auto-recovery system. We compare the total execution time
of our system to the original Hadoop both in the case without
failure and with failure.

An experimental environment is a computer cluster that
consists of 57 nodes interconnected with gigabit ethernet. Each
node has an Intel Xeon 3.4 GHz dual core CPU, 2GB RAM,
and 80GB disk. We base our system on Cent OS 5.0 and
Hadoop 0.20.2.

A. The overheads of checkpoints

We measure the total execution time of a job, which
executes the WordCount[8] sample program of Hadoop, under
the situation that no failure occurs on the JT during the

- 7 -



TABLE I
THE TOTAL EXECUTION TIME OF A JOB ON OUR SYSTEM WITH VARYING EXPERIMENTAL PARAMETERS IN THE CASE WITHOUT FAILURE. EACH VALUE IS

THE AVERAGE OF THREE MEASUREMENTS. P DENOTES THE NUMBER OF TTS.

P = 19 P = 38 P = 57

w/o checkpoint N = 10 N = 100 w/o cp. N = 10 N = 100 w/o cp. N = 10 N = 100

18GB 987 990 986 510 516 513 365 372 368
36GB 1,860 1,873 1,860 977 985 982 640 648 643
54GB 2,794 2,826 2803 1,386 1,414 1,385 892 920 902
72GB 3,670 3,745 3,681 1,830 1,882 1,827 1,172 1,223 1,174

TABLE II
THE TOTAL EXECUTION TIME OF A JOB AND DOWNTIME OF THE JOBTRACKER IN THE CASE WITH A FAILURE AND AUTO-RECOVERY. THE JOB EXECUTES
A WORDCOUNT PROGRAM FOR 18GB INPUT DATA WITH P = 19, N = 10, AND M = 3. A FAILURE OCCURS IN A SPECIFIC PHASE AT ONCE. TIMES ARE

PRESENTED IN SECOND.

phase progress at the failure elapsed time downtime the total # of reassigned tasks
at the failure Map Reduce at the faiure of the JT execution time proposed naı̈ve

(a) (no failure) - - - - 990 - -
(b) 13% 0% 131 27 1,004 2 46
(c) M 13% 0% 131 28 1,020 2 44
(d) 13% 0% 131 26 1,019 2 45
(e) 80% 23% 734 27 1,080 12 39
(f) MR 80% 22% 738 28 1,080 12 41
(g) 80% 25% 779 27 1,112 12 41
(h) 100% 32% 975 27 1,019 16 22
(i) R 100% 32% 963 29 1,038 16 9
(j) 100% 33% 981 28 1,025 16 20

-2

0

2

4

6

18GB 36GB 54GB 72GB

O
v

er
h

ea
d

s 
(%

)

Input data size

N=10

P=19

P=38

P=57

-2

0

2

4

6

18GB 36GB 54GB 72GB

O
v

er
h

ea
d

s 
(%

)

Input data size

N=100

P=19

P=38

P=57

Fig. 4. Estimated overheads of checkpoints.

execution. We also evaluate the size of a snapshot generated
by checkpoints.

Table I shows the execution time with varying experimental
parameters: the frequency of checkpoints, the number of
TTs, and Input data size. We can estimate the overheads by
comparing the result of N = 10 and N = 100 with that
without checkpoints because the case without checkpoints is
similar to original Hadoop.

Estimated overheads of checkpoints are shown in Figure 4.
The overheads are less than 4.3%. High frequency of check-
points increases the overheads. In the cases with N = 10,
the overheads also increases as P increases. On the other

0

5

10

15

20

25

30

35

0

0.5

1

1.5

2

2.5

18GB 36GB 54GB 72GB

D
a

ta
 s

iz
e 

(M
B

)

T
im

es
 (
s)

Input data size

Snapshot 

data size

Time 

to serialize

Fig. 5. The size of a snapshot and its serializing time varying the input data
size (P = 19 and N = 10).

hand, we find no correlation between P and the overheads
in case with N = 100. Our checkpoint method principally
increases loads on the JT, while the JT usually idles in original
MRFW. Therefore, the loads does not necessarily increase the
execution time if the frequency of checkpoints is enough low.

The execution time slightly decreases rather than that
without checkpoints in four cases. We consider this is due
to originally perturbation in Hadoop. Regardless our auto-
recovery methods, the execution time of a job frequently varies
in ten seconds according to data allocation on HDFS. Since
Hadoop automatically allocates data to HDFS, we cannot
control it in this experiment.

Figure 5 indicates that the size of a snapshot is proportional
to the input data size. Almost of a snapshot is information on
the status of tasks which compose a job. Since MRFW divides
the input data into certain size splits and assigns a task to
each split, the number of tasks increases as input data size

- 8 -



t

M
MR

R

MapTasks

ReduceTasks

Fig. 6. Classified execution phases according to a kind of tasks in processing:
phase M processing only MapTasks, phase MR processing both MapTasks and
ReduceTasks, and phase R processing only ReduceTasks.

MapTask ReduceTask JobTracker

Node 8

Node 7

Node 6

Node 5

Node 4

Node 3

Node 2

Node 1
t(s)

0 100 200 300 400 500 600

Fig. 7. An experimental result of job behavior with failures and recoveries.
Two failures occur at the different time. Node 2 and node 4 invoke a new
JobTracker in the middle of the execution to recovery from the failures.

increases. Therefore, the input data size determines the size
of a snapshot.

Large snapshots probably increase the overheads of our
system. To create a snapshot safely, we should lock the original
process of the JT while the JT serializes a snapshot and stores
it. This lock causes delay in replying to a heartbeat. A large
snapshot makes the delay large. If a TT sends a heartbeat
includes a request for task assignment during the lock, the TT
must wait until it receives reply, resulting in overheads. As
shown in Figure 4, large input data increases the overheads in
the cases with N = 10.

B. A test of auto-recovery

As shown in Figure 6, we classify progress of a job
execution into three phases according to a kind of tasks in pro-
cessing. While the JT tracks both MapTasks and ReduceTasks
at phase MR, it tracks only MapTasks and only ReduceTasks
at phase M and R, respectively.

To confirm auto-recovery mechanism, we force a failure to
occur on the JT by kill system call at each phases. For example,
Figure 7 shows behavior of a job with two failures at phase
MR. The job executes a WordCount program for 5GB input
data with P = 7 and N = 10. We first cause a failure on node
1 and then cause another failure on node 2 after recovery from
the first failure. As shown in figure 7, even if a JT fails to stop,
a new JT starts up on another node within 20 seconds.

Thus, our system can recover from a failure of multiple
times. At the other phases, our auto-recovery system works
surely as well as at phase MR.

C. The overheads of recovery
We measure the execution time of a job in the case with

a failure and auto-recovery (see Table II). As same as V-B,
the failure be caused deliberately. We confirmed the result of
a job is correct in the all cases. Table II shows the increased
execution time is up to 112 seconds while the downtime is up
to 29 seconds.

Recovering the JT degrades execution efficiency because
the number of TTs decreases by one to invoke a new JT. For
example, in the case of phase M in Table II, the rest of the
execution time after the failure is expected as 990−131 = 859
seconds. The execution efficiency decreases to approximately
18/19 = 94.7%. Therefore we estimate roughly the total
execution time at 131 + (819/0.947) = 1, 038 second. If the
number of TTs is large enough, we consider the degradation
of execution efficiency is negligible.

Although an early failure increases the rest of the execution
time, the total execution time in the case of phase MR and R
is larger than that of phase M in Table II. This is due to the
increase of reassigned tasks. We discuss the problem later in
V-C2.

1) Discussion about downtime: We define downtime Tu as
an absence period of a JT, from the occurrence of a failure
on a JT to a new JT in operation. The downtime depends on
the following three operations. Table III shows the breakdown
of downtime measured with changing input data size for a
WordCount program.

The first is a detection of the failure by using timeout. In
this experiment, we set M = 3. An interval of heartbeats is
less than three seconds in default, so that the detection time
Tf is around eight seconds. Users can control Tf by changing
M .

The second is invoking a new JT process. Ti in Table
III shows duration from the detection of the failure by the
first TT to the completion of start up on the new JT. In our
experimental environment, it is less than five seconds.

The last is a deserialization of a snapshot. As mentioned in
V-A, the size of a snapshot is proportional to the input data
size. Since large snapshot increases deserializing time Td, it
depends on the input data size. Deserializing time is larger than
serializing time for the same data because a deserialization
requires the generation of objects.

Note that the downtime does not necessarily increase the
total execution time since TTs continues to execute tasks even
if the JT fails to stop. We find no correlation between the
downtime and the increased execution time.

2) Discussion about reassigned tasks: As shown in Table
II, except the case (i), our system reduces the number of
reassigned tasks compared to a naı̈ve rolling back. This
indicates that reconstructing JT prevents to rollback TTs.

Although the ideal number of reassigned tasks is at most
four in this experiment, our system executes more reassigned
tasks in the cases from (e) to (j). This is due to an un-
sophisticated implementation. The expected implementation
should reassign the tasks that are completed on the candi-
date node after the last checkpoint. In addition, the current

- 9 -



TABLE III
THE BREAKDOWN OF DOWNTIME OF THE JOBTRACKER IN SECONDS
(P = 19, N = 10, AND M = 3). Tf , Ti , AND Td DENOTE TIME FOR

DETECTING FAILURE, TIME FOR INVOKING A NEW JOBTRACKER, AND
TIME FOR DESERIALIZING A SNAPSHOT, RESPECTIVELY.

Input data snapshot downtime breakdowns
(GB) (MB) Tu Tf Ti Td

18 7.1 27.6 7.5 3.6 15.4
36 13.8 41.0 8.1 4.8 28.9
54 20.6 54.4 8.4 3.5 42.2

TABLE IV
THE NUMBER OF EXECUTED TASKS INCLUDING THE REASSIGNED TASKS.
THE JOB EXECUTES A WORDCOUNT PROGRAM FOR 18GB INPUT DATA

WITH P = 19, N = 10, AND M = 3. THE NUMBER ORIGINALLY VARIES
DUE TO BACKUP TASKS.

phase # of executed # of reassigned
at the failure tasks tasks

(a) (no failure) 305 -
(b) 301 2
(c) M 298 2
(d) 300 2
(e) 315 12
(f) MR 314 12
(g) 319 12
(h) 305 16
(i) R 293 16
(j) 305 16

implementation also reassigns the all tasks that have been
completed on the candidate node until a failure. Therefore,
a late failure increases reassigned tasks (see Table IV). With
expected implementation, the number of reassigned tasks in
the case (i) would be smaller than a naı̈ve rolling back.

In the cases from (e) to (g), the excess reassigned tasks
increases the execution time. Table IV indicates that the
number of executed tasks in these cases increases due to the
reassigned tasks. On the other hand, in the case from (h)
to (j), the execution time and the number of executed tasks
increase a little in spite of more excess reassigned tasks. The
all of the reassigned tasks are MapTasks. All TTs continue
to execute ReduceTasks even with a failure, because they
have already gathered the result of all MapTasks before the
failure in these cases. If TTs complete all ReduceTasks before
the completion of reassigned tasks, the reassigned tasks are
canceled immediately. Therefore, the reassigned tasks slightly
increase the execution time in these cases.

VI. CONCLUSION

We implements an auto-recovery system for the JobTracker,
which is the single point of failure in Hadoop, to apply
Hadoop to time-critical applications. The assumed failure is a
situation that the JobTracker cannot reply to a heartbeat from
TaskTrackers. Our system can recover the JobTracker from a
failure of multiple times.

The system periodically stores a snapshot of the current Job-
Tracker state to HDFS during a job execution. If once a failure

occurs on the JobTracker, a specific TaskTracker switches new
JobTracker. The new JobTracker loads a snapshot from HDFS
and reconstructs the states of JobTracker according to the
snapshot and information on the other TaskTrackers.

In order to detect a failure, each TaskTracker observes
a timeout of a heartbeat that a TaskTracker send to the
JobTracker periodically. This technique probably involves a
misdetection due to a temporary network congestion. There-
fore, the new JobTracker forces the old JobTracker to terminate
immediately after its start up to prevent that two JobTrackers
exist at the same time.

Experimental results show that the overheads of checkpoints
are less than 4.3%. They also show that a job execution
continues and finishes normally even with failures and re-
coveries. Our system reduces the reassigned tasks caused
by a rollback compared to a naı̈ve rollback. However, the
recovered execution time increases due to an unsophisticated
implementation.

ACKNOWLEDGMENT

REFERENCES

[1] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data pro-
cessing on large clusters. Communications of the ACM, 51(1):107–113,
January 2008.

[2] Leons Petrazickis and Bradley Steinfeld. Crunching big data in the cloud
with hadoop and biginsights. In Proceedings of the 2011 Conference of
the Center for Advanced Studies on Collaborative Research, CASCON
’11, pages 334–335, Riverton, USA, 2011. IBM Corp.

[3] Tom White. Hadoop: The Definitive Guide. O’Reilly Media/Yahoo Press,
Sebastopol, CA, 2nd edition, 2009.

[4] Toshio Suganuma, Akira Koseki, Kazuaki Ishizaki, Yohei Ueda, Ken
Mizuno, Daniel Silva, Hideaki Komatsu, and Toshio Nakatani. Distributed
and fault-tolerant execution framework for transaction processing. In
Proceedings of the 4th Annual International Conference on Systems and
Storage, SYSTOR ’11, pages 2:1–2:12, New York, USA, 2011. ACM.

[5] NTT DATA CORPORATION. The accomplishment report of software
engineering work cooperated among industry and academia in 2009.
Technical report, Ministry of Economy, Trade and Industry, 2010. (In
Japanese).

[6] Yoshi Tamura. Kemari: Virtual machine synchronization for fault toler-
ance using domt. In Proceedings of Xen Summit Boston 2008, Boston,
USA, June 2008.

[7] Garhan Attebury, Andrew Baranovski, and Ken Bloom. Hadoop dis-
tributed file system for the grid. In Proceedings of 2009 IEEE Nuclear
Science Symposium Conference Record (NSS/MIC), NSS/MIC ’09, pages
1056–1061, Orlando, USA, January 2009. IEEE.

[8] Wei Jiang, Vignesh Ravi, and Gagan Agrawal. Comparing map-reduce
and freeride for data-intensive applications. In Proceedings of 2009
IEEE International Conference on Cluster Computing and Workshops,
CLUSTER ’09, pages 1–10, New Orleans, USA, September 2009.

APPENDIX A
DETAILS OF SNAPSHOT

A snapshot contains the following fields in JobTracker class:
• int totalSubmissions
• int numResolved
• int totalMaps
• int totalReduces
• State state
• Map<JobID,JobInProgress> jobs
• TreeMap<String,ArrayList<JobInProgress>>

userToJobsMap
• Map<String,Set<JobID>> trackerToJobsToCleanup
• Map<String,Set<TaskAttemptID>>

trackerToTasksToCleanup
• Map<TaskAttemptID,TaskInProgress> taskidToTIPMap
• TreeMap<TaskAttemptID,String> taskidToTrackerMap

- 10 -



• TreeMap<String,Set<TaskAttemptID>>
trackerToTaskMap

• TreeMap<String,Set<TaskAttemptID>>
trackerToMarkedTasksMap

• Map<String,HeartbeatResponse>
trackerToHeartbeatResponseMap

• Map<String,Node> hostnameToNodeMap
• Map<String,Integer> uniqueHostsMap
• JobTracker.RecoveryManager recoveryManager
• TreeSet<TaskTrackerStatus> trackerExpiryQueue
• FaultyTrackersInfo faultyTrackers
• String trackerIdentifier
• int totalMapTaskCapacity
• int totalReduceTaskCapacity
• int numTaskCacheLevels
• Set<Node> nodesAtMaxLevel
• TaskScheduler taskScheduler
• List<JobInProgressListener> jobInProgressListeners
• int numBlackListedTrackers
• HashMap<String,TaskTrackerStatus> taskTrackers
• JobConf conf

- 11 -




