Acceleration of Variance of Color
Differences-Based Demosaicing Using CUDA

Muhammad Ismail Farutj Fumihiko Ind, and Kenichi Hagihafa
Graduate School of Information Science and Technology, Osaka University
1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
Email: {i_farugi*, inof, hagihard } @ist.osaka-u.ac.jp

Abstract—Image demosaicing algorithms are used to reconstruct
a full color image from the incomplete color samples output
(RAW data) of an image sensor overlaid with a Color Filter
Array (CFA). Better demosaicing algorithms are superior in
terms of acuity, dynamic range, signal to noise ratio, and artifact
suppression, which make them suitable for high quality delivery
such as theatrical broadcast.

In this paper, we present our efforts in examining the feasibility
of exploiting the Graphics Processing Unit (GPU) as an emerging
accelerator to create an on-the-fly implementation of Variance of
Color Differences (VCD) demosaicing, a state-of-the-art heuristic
demosaicing algorithm developed to eliminate false-color artifacts
in texture region of images.

Our efforts in this paper are 1) implementing the algorithm as
several kernels to separate the bottleneck portion of the algorithm
from the rest and to minimize idle threads and 2) reducing
1/0 between shared and global memory when performing green
channel interpolation by separating the input RAW data into four
channels. We then compare the implementation featuring both

higher-end cameras offer a feature to directly record RAW data
into storage without going through the entire imaging pipeline.
Such data is then processed by some external processors
capable executing demosaicing in shorter time.

In another spectrum, users of video cameras equipped with
Bayer filter [2] have suffered by the long time and huge space
required to acquire high quality files from their camera. To
process the files, users have to wait for a long time until
the demosaicing algorithm finishes processing the frames, and
then saving the demosaiced file into storage. Here lie the
challenges this paper is going to solve: to enable users acquire
high quality demosaicing result from high resolution video
files quickly without having to store large demosaicing result
into storage.

In this paper, we propose an acceleration of Variance of Color
Differences (VCD) [3]-based demosaicing, a high quality

acceleration methods with a single kernel implementation. Based demosaicing algorithm specifically developed to combat énoir

on experimental results, our proposed acceleration methods

achieved per-frame processing time of 343 ms on an nVidia GTX
480, which translates into 2.95 fps. Additionally, our proposed

in texture region of images, using Compute Unified Device
Architecture (CUDA) [4]. The objective of this implemen-

methods were also able to accelerate the kemel time and the tation is to demosaic video RAW files on-the-fly as fast as

effective memory bandwidth by a factor of 2.1x compared with
its single kernel counterpart.

Keywords—Parallel processing; image demosaicing; CUDA; GPU

I. INTRODUCTION

possible, so that the video editing workflow will be accelerated
and the storage requirement to work on demosaicing result
can be eliminated. To achieve this, we first introduce the
wavefront processing as the base method of the algorithm
parallelization. We then propose two implementation methods,
which are 1) implementing the algorithm as multiple kernels
to separate the bottleneck portion of the algorithm and to
minimize idling threads, and 2) reducing input and output

Image demosaicing [1] is an integral part of color imagingansfer between global and shared memory [4] in the green

pipeline. It is the first step of the pipeline, in which thehannel interpolation phase by separating the input RAW data
luminance data known as RAW data in each photosite jiso separate channels.

expanded into RGB values. One method to evaluate the quality
of demosaicing algorithms is to measure how effective they
approximate the remaining color values while not introducing

artlfagt knqwn as mo. The less moe Introduceq In the de? Several works have been dedicated to implement demosaicing
mosalced images, the better quality the demosaicing aIgontrl]g}ng GPU. For example, McGuire [5] accelerated Malvar-
IS. He-Cutler [6] image demosaicing algorithm using OpenGL in
However, sophisticated demosaicing algorithms tend to beal-time speed. Fung et al. [7] show two examples of CUDA-
computationally expensive and impractical to be implementégésed demosaicing based on bilinear and Lanczos [8] method.
on almost all digital cameras. Therefore, demosaicing algdowever, these algorithms have inferior n@isuppression
rithms used in many digital cameras are generally favorimpmpared to Chung’s algorithm. The first commercial appli-
execution speed over quality, resulting pictures with #&oircation known to deliver real-time preview and grading for 4K
Hence, to enable users accessing higher quality imagB#{w was IRIDAS [10] Speedgrade XR which was launched

Il. RELATED WORK



in 2009. However, based on its high speed, we suspect it
to perform a demosaicing algorithm with low complexity, " Poty+ Posty+ Poy1+ Poyin

although the exact algorithm is closed. Izy = 1
Meanwhile, recent high-quality demosaicing algorithms in- 4 4Ppy — Pooy — Pojoy — Pey o — Pryio @)
clude Mairal et al. [12] algorithm. This algorithm along with 8 '

VCD has a high CPSNR figure. However, Menon et al. [13]

benchmarks recent demosaicing algorithms including Mairal’'s )
g &l g ﬁﬁ/the actual algorithm, those values are computed on-the-

while interpolating green channel. However, since those
values are used frequently in green channel interpolation
phase, moving those values calculation into precomputation
will reduce its execution steps fro@(w + h) steps intoO(1)
I1l. VARIANCE OF COLOR DIFFERENCES(VCD) steps.

DEMOSAICING (CHUNG' S ALGORITHM)

and Chung's algorithm, and we found Chung’s algorithm h
the best CIELab [14] figure which closely resembles hum
eye evaluation result.

B. Interpolation of Green Channel Values at Red and Blue
This section explains VCD-based demosaicing. VCD is @FA Sampling Positions
demosaicing algorithm developed by Chung and Chan [3] to
suppress artifact known as meiwhen demosaicing Bayer The next step, which is the contribution of Chung and Chan
CFA. It extends Adaptive Color Plane Interpolation (ACPIiS to heuristically interpolate green channel at red and blue
algorithm [9] by heuristically determining the interpolatioflCFA sampling positions. First, they classify whether a CFA
direction of the green channel. In this paper, we descrig@mpling position belongs to a texture or to an edge. This

Chung’s algorithm as an algorithm consisting of four stegs achieved by computing an edge classifigr,, which is
explained from section llI-A to section llI-D. obtained from summing the difference of the neighboring

_ , ixels in horizontal /) and vertical {") direction. The
For the rest of the explanation of Chung’s algorithm, we WI@alues ofe,,, L, and LV are obtained from (4), (5), and
denote the value of a sampling position from the input RA\%) respecﬁ\%ly ’ Y
data at(r,y) coordinate as>, ,. Each P, , is overlaid by a '

color filter element whose channel type is either red, green, or

blue. The output of the algorithm is an image with complete €ry = Mmazx <LH’ LV> 7 4)
information in each sampling position, where the red, green, ’ LV’ LH
and blue channel values &t,y) will be addressed as, ,,
Ja,y, andb, ,, respectively.
The problem of a demosaicing algorithm for Bayer CFA isto ; n _ Z Z Py ey sty — ol
interpolate two missing channel values in edeh,. It needs DSdien \ aedoToano odr.ytdy Tytdyl |
to interpolateg, , and b, , at red CFA sampling positions, - - (5)
ryy andb, , at green CFA sampling positions, angd, and
gz,y at blue CFA sampling positions. By completing all of
those channels, we construct a full color image from a RAW
image with Bayer CFA. LV = Z Z Py deysdy — Potdey|
—2<dx<2 \ —2<dy<2,y#£0
(6)

A. Precalculation of Three Green Channel Values at Red and
Blue CFA Sampling Positions The CFA sampling position is classified as an edge.if >

T, whereT is a predefined threshold by user. Its green channel
As the first step, the algorithm precalculates green channel wlue g, ,, can then be interpolated according to (7).
ues for each pixel on blue and red CFA sampling positions in
horizontal @fy) vertical () ,), and diagonald?,) direction. (g LR <LV, @)
They are obtained as follows: G,y g}/ otherwise
On the other hand, the CFA sampling position is classified as a
GH Pp 1y+Pii1y L 2Py — Prooy — Pogoy (1) textureife,, <T.Chung and Chan stated that for a texture,
oY 2 4 three variance of color differences values can additionally
supplied to increase the accuracy of the interpolation direction
for this CFA sampling position. Those values are variance of
v Peyi+Puyi 2P, —Piy o~ Pryyo @) golor d|fferences in _honzontal, vert|.cal, and diagonal direc-
Gz,y = 9 4 ) tions which are obtained by computing (8)—(10).




HUJQU,y = %Z((dwﬂﬁy) - % Z(derj,y))v (8) Y Y

= jET
9 1 1 «
VOgy = 9 Z((dm’yﬂ) ) Z(dx,ywﬁ))a 9) X
i€ jEw

002 = 505 S ((Feria) — 5 3 (Fern)

iew jeEw () (b)

1 1
+ § Z((fm,yﬂ) - § Z(fxyﬂ)))» (10) Figure 1. (a) The location of green CFA sampling position surrounded by red
= jET CFA horizontally and blue CFA sampling positions vertically. (b) The location
of green CFA sampling position surrounded by blue CFA horizontally and red
) CFA sampling positions vertically.

where yo2 ,, vo2,, and po} , denote variance of color
differences in horizontal, vertical, and diagonal directions
respectively. The range of those summations is defined by

U = {0,+1,42,43,+4}. Furthermore, d,i;y, duy+is

Pociy = 9o-1y * Pty = 9ri1y (14

faotiy and fp o, are defined with (11)—(14). hay = oy + : 7
Px+i,y — Jz+iy if i = _47 _2a
Aptiy = Poiiy— gfﬂﬁy’ if 1 =0,2,4, (11) Ve = Guy + Pyy-1—9y—1+ Poyt1 — ga:,erl. 17)
deti—1,y+tdetiti,y if i =41.43 Y Y 2
2 ’ ) )
Those two values are then assigned as interpolated blue or
p o green channel value, according to the location of the sampling
z,y+i — Jxy+is if i = _47 _23 e [P H faod
W I position. If it is located as Fig. 1(a) shows, the missing red
dyyti = Pryti = Goytis if i=0,2,4, 12) ’ _ a o
’ A A . and blue values will be assigned &g, = hy 4, bz.y = Vg.y,
z,y+i—1FTde y+it1 if i = 4+1.4+3 - s ) Y Y Y oy
2 ’ T otherwise if it is located as Fig. 1(b) they will be assigned as
bay = Moy, Tay = Vo,y.
Potiy = Gotiys if i =—4,-2, _
R px Y ifi=0.2.4 D. Interpolation of Red Channel Values on Blue CFA Sam-
fw-&-uy - r+i,y gm+z,y’ T2 5 4y Ty (13) | -
fotitytforitiy if i — +1 +3 pling Positions and Blue Channel Values on Red CFA Sam-
2 ’ T pling Positions
P . Finally, we interpolate the red channel value at blue CFA
z,y+i — Yz,y+is if i = _47 _27 B .
Forei =4 Poyri—db ., if =094 (14) sampling positions, and the blue channel value at red CFA
oyt PSS Se A i 171 7i3 sampling positions. The equation for red channel value inter-
2 9 9 .

polation is described in (18). The value for the blue channel

Finally, the green channel valug., can be interpolated by at red CFA sampling positions is also computed in the same

fashion.
(15).
. 1
g{j if HUg,y = min(HO'g’y,v Ug’y,D Ug,y), Tey = gm,y‘i’z g g (Pz+dm,y+dyfgm+dz,y+dy) (18)
Yoy =1 9 i vyoi,=min(go2,vo:,,p02,) dy=+1dz=+1
~D H 2 3 2 2 2
if poz, =min(gos v oi,,pD0%.,) ,
g, Ty (H0%V 022D O2y) (15) IV. PARALLELIZATION STRATEGIES OFCHUNG’S

DEMOSAICING ALGORITHM

C. Interpolation of Red and Blue Channel Values on Gre§p his chapter, we will describe the parallelization strategy
CFA Sampling Positions we have gone through in accelerating Chung’s demosaicing

Using the result of the interpolated green channel, we Cg}gorithm. We choose CUDA as the platiorm to accelerate

compute the values of red and blue channels on green Cgﬂung’s algorithm since it has _the data parallelism, where the
sampling positions. To do this, we interpolate , value GPU has potential to perform it faster than the CPU.

horizontally andv, , value vertically at(x,y) according to As an overview, we start by explaining the wavefront method
(16) and (17). which we believe is the natural parallelization method for



—3
I
w

X4 X3 x2 xl X a1l x#2 X#3 X+ [ \

¥4 Block
va (1,0
y-2
Block l h=3
¥1 (0,1)
BB B N
Block
s (m-1,n-1)
] .
y43
Ve - Figure 3. The execution are is divided intom x n blocks. Herem =
3,n = 3,a =4, and3 = 3. A block wave D), consists of all blocks with

the samek = m + n. For example, blocK0, 1) and (1,0) belong toD;.
@

processing. At the grid-level, the RAW dafa with width
. ;. w and heighth is divided intom x n blocks. Each block

has widtha and height3, hencem = [%] andn = (%1.

All blocks wherek = m + n are grouped into &lock wave
Dy.. The application processes the block waves sequentially
starting from top left to bottom right, where block wave
Dy, is processed before block wave,. Each block wave

() is mapped into a CUDA kernel launch with one dimensional

. . . . . . rid size. In CUDA, synchronization between block waves is
Figure 2. (a) An illustration of data dependencies when interpolating tl

green channel aP, ,. The light green box indicates interpolated greefione automatically between kernel launches.

channel values, and the arrows indicates the direction of the dependengy.: : : s .
(b) An example of wavefront processing. Here, one thread is responsiblerrt%'de a block, if a plxe_lpw,y haseﬂ_my <T,itis mapped into
interpolate the green channel at one sampling position. Threads in the s@nthread. All threads with thread indék;, ¢,) are grouped as

anti diagonal, i.e. thread wave, are executed in parallel. Meanwhile, eaghhread wavel,, wherev = t,, +ty. The kernel consists of a
thread waves are executed sequentially. loop in which each thread decides to process a pixel or not in
the wave depending on its thread index. The thread waves
are processed sequentially, whefe_; is executed before
data dependency introduced by (11)-(14). We then propdBe Between each thread wave execution, synchronization is
two strategies to accelerate Chung’s algorithm, which are gérformed once. Fig. 2(b) illustrates the block-level wavefront
separating data-dependent portion from the rest of computatimocessing. In CUDA, synchronization between thread waves
by implementing Chung’s method as multiple kernels and 2 accomplished manually by synchthreads() function
reducing idling threads during I/O transfer by separating inpptovided by the CUDA Software Development Kit (SDK).
data into several channels.

The computation of thread waves inside a block is performed
) in o + 8 — 1 steps, while the computation of the entire block
A. Parallel Processing by Wavefront Method waves is performed imn + n — 1 steps. Hence, this CUDA-
hased wavefront method takes a totah- h + m(f—1)+

&4@ —1) — (a— § —1) steps to interpolate the green channel
at blue and red CFA sampling positions. In other words, it has
O(w + h) steps which will potentially become the bottleneck
in the application.

In the green channel interpolation phase of Chung’s algorith
(11) and (13) require previous green channel interpolati
results ofP,_, , andP,_, ,,, meanwhile (12) and (14) require
previous interpolation result of, , > and P, ,_4. This
implies a form of data dependency which is illustrated
Fig. 2(a). As a resultP, , is dependent to the green channel ) )
interpolation results aP,_».,, Po_4., Poy_2, and Py 4. B. Separation of Data-dependent Portion from the Rest of

Therefore, we hypothesize that the natural parallelizatigrPmputation

methad for th|s phase while guarante(_elng the required d‘?—tfb 4 illustrates that although in the green channel interpo-
erendency IS bY a wavefront processing method [15] Wh'%}ion stepP,, depends on the previous interpolation result
is illustrated by Fig. 2(b). of its neighbo(rs, the rest of steps are independent and can be
To conform with CUDA's hierarchical execution model [4],accelerated by an embarrassingly parallel method. Hence, if all
the implementation of the wavefront method for Chung'sf four Chung’s algorithm’s steps are implemented as a single
algorithm in this paper consists of two levels: tgad-level monolithic kernel, the performance of the phases without any
and theblock-level Fig. 3 illustrates the grid-level wavefrontdata dependency will be hindered by the bottleneck mentioned



Single kernel implementation Multiple kernel implementation

(AgrnAvar
Kernel 1 Kernel 2 max{Agm Avar)

{ Fully parallel Fully parallel Data dependent Pl al r
max(AgenAvar)
é——l Data dependent z

—
‘| Fully parallel w

Kernel3 < h
Fully parallel A Avar Aern
f var

Agrn

Monolithic kernel

Figure 5. Computation areaR.denotes the execution area of input loading
phase.Q denotes the computation area of precomputation of green channel
) ) o ) o values phase, wheie denotes the computation area of other phases.

Figure 4. When the algorithm is implemented as a single monolithic kernel,

the performance of data-independent portions of calculation will be reduced

by the bottleneck portion of the algorithm.

C. Classification Based on Differences of Kernel Execution

TABLE | Area
FINAL KERNEL LIST.

Besides the data dependency-based separation policies ex-

zt/ip [ ?emafrks — b’IIA:a[ Ks;ze' plained in Section IV-B, another factor that must be considered
memory. o oS Te 9ien when implementing a CUDA kernel is that if each kernel han-
— | Converts input from unsigned shoft R 1 dles different computation areas, there will be idling threads
to float. which will lead into kernel ineffectiveness. A computation
! Eﬁgﬁ?\ggf‘tes temporary  greqn Q 2 area is defined as an area in which a kernel will store its
2 Performs edge detection. P 3 computation result into.
— Performs the channel separation pf R 4 . . . .
input RAW data. Fig. 5 |IIu§trates different computation areas of e:flch step. The
2 Calculate variance values and inter- P 5 computation area for step 1 which computg$,, gy, and
a— Fcz'ate IGtChtﬁ””e' ;’a'futi- S - g2 is denoted byQ. Based on (11) and (13)i,,, and f,,
nterpolate the rest o e channels. 5 . . . ~D . .
— [ Combine per-channel float-ypel R - calculations in step 2 requigg’, andg?, in positive direction
output data into unsigned shoft with maximum rangeA,.. = x + 4. Additionally, (12) and
RGBA data. (14) implies that step 2 also requirés, andg”  in positive
r ; ; > . 2y T,y
NIA Hgﬂfg?f data from global to host R | N/A direction with maximum rangel,., = y + 4. Hence, Q has

width w + A4 and heighth + A,
Meanwhile, based on (1)—(3), to compupewe require values

before. On the other hand, if the algorithm is implemented 86 neighboring pixel within a maximum radius of,,,, in

several kernels, the bottleneck portion can be isolated into ft@rizontal and vertical directions as input. In [3], Chung
own kernel without hindering other steps’ performance.  definesd,, = 2. Hence, the required data that must be loaded
into global memory [4] and converted to floating point type

Based on this fact, we propose to classify the computatigi accommodate all calculation phases exists in &eahich
steps in Chung's algorithm based on their data dependengys widthw + A,,, + Agrn + max(Ayar, Agrm) and height
The classification policies are: h+ Avar + Agrn +max(Ayar, Agrn)- l

1) The computation phase with data dependency is se@aﬁ mentioned above, if different areas are processed by the
rated from the rest and is implemented as one kernelsame kernel, there will be idling threads when computing the

2) The computation phases without any data dependerf¥jase with least area. Fig. 6 shows an example where threads
are united together into one kernel. are idling in block(0,0) and in block(m — 1,n — 1) when
computing P. This problem happens because the kernel with
Based on those policies, because there is only one step with< n thread blocks tries to procegs (), and R in different
data dependency, we logically need to implement Chungeps.

algorithm as three CUDA kernels: 1) a kernel that performg, goyye this problem, we propose to do further classification
all computations before green channel interpolation phase,ozf)the computation steps based on the following policies:
a kernel to perform the green channel interpolation step, and

3) a kernel that handles the rest of computations. However,1) Separate the kernel which contains different computation
due to optimization schemes introduced in Sec. IV-C—IV-D, areas into multiple kernels according to its computation

the implementation is finally implemented as seven kernels as area.

shown in Table I. 2) Combine any subsequent computation steps which have



Idle threads when computing P TABLE I

SPECIFICATION OF THE EXPERIMENT MACHINE
0,0
Item [ Value

P QR
Processor Intel Xeon X5450, 3 GHz, 4 cores
._ldle threads when computingP . Memory DDR3 8 GB
GPU nVidia GeForce GTX 480
m-1n-1 1 GPU Memory GDDR5 1.5 GB
Operating System Windows XP 64-bit XP3
CUDA Version 4.0
Figure 6. Idle threads that will happen if P, Q, and R are processed by a same IDE Visual Studio 2005

kernel. Each cell represents a thread. Gray-colored cells are busy threads, and
white-colored cells are idle threads.

2) Measuring the efficiency of optimization methods in

the same computation area into one kernel. terms of execution time, floating point operation per
o _ second (FLOPS), and memory bandwidth.
Based on the policies above, since kernel 1, 2, and 3 on Table

| processes®, @, and P, we decide to separate those proceskhe specifications of the machine used for executing the
into three kernels. Similarly, since kernel 6 performs two steg&pPeriments are shown in Table II.

deSCI‘i.bed in Section II-C and IlI-D |IP, we can combine As we do not have access to any video camera Capab'e of
them into one kernel. outputting a RAW image with 4K resolution, we chose to
simulate it by using a RAW image from a still digital camera

D. R_educmg Input Loadmg Time of the Green Channel Inte\5\7ith nearly similar resolution. The RAW image frame used as
polation Phase by Separating Input Data input for our experiment has size of 46683072 pixels, and
We noticed that in (11)—(14), the only neighbors accessedYf€s a Bayer type CFA.

input data and output data b, , only P.isy+a, Where To determine the optimum block width, width 3, and

o = £2, +4. Furthermore, all neighboring CFAs &%, y+«  register count- combination for each kernel, we performed
have the same CFA as the CFA being computed, and otligé following experiment. First, for each kernel we choose
CFAs are not used. several(a, 3) whose static shared memory size [4] fits in a

Based on this fact, in order to save computation time frofgvice. Next, using eacfw,3) we ran the kernel with an
loading unnecessary CFAs, we propose to separate all valuegfipitrary number of registers using CUDA Visual Profiler [11]
input data at the same CFA into their own matrix in a separd obtain its static memory size. We then input the obtained
kernel. Specifically, the input RAW dat® is separated into Static memory sizep, and 3 into the CUDA Occupancy
four matricesRk, B, GR, andG B in place. MatrixR will hold ~ Calculator [16] to get the biggest register cougy; that results
values from red CFA, matri&R will hold green CFAs which the highest occupancy number. Thig, will give the fastest
are surrounded horizontally by two red CFAs, matBxwill ~ result for its corresponding and 5. Finally, we compare the
hold blue CFAs, and finally matri&'B will hold green CFAs results of eact{a, 3,7,,:) combination and chose the fastest
which are surrounded horizontally by two blue CFAs. For One.

with width w and heighth, the width and height of matrices

R, B, GR andGB will be w/2 andh/2, respectively. A. Performance Evaluation

Since kernel 5 in Table | that handles green channel inteffe used two CUDA implementations, which are a monolithic
polation phase is executed multiple times by the wavefrogérnel version and a multiple kernels version which imple-
processing, we hypothesize that this optimization will helgented our acceleration methods. The first version performs
reduce its total execution time. In this paper, we impleme@tavefront processing on all interpolation steps of Chung’s
the input separation phase as a kernel which is launched afigjorithm, while the multiple kernels version only performs
the edge detection kernel is executed. This kernel is denotedgsefront processing on the green channel interpolation step,
Kernel 4 in Table I. As the final result of those optimizationsand processes other steps using embarassingly parallel meth-
the algorithm is implemented as 7 kernels. ods. We will refer the monolithic kernel version as the single

kernel version hereafter.
V. EXPERIMENTAL RESULTS AND ANALYSIS ] _ )
We start the evaluation by presenting Table Ill, which shows

In this section, we present the experimental results of otife total execution time of our GPU implementations while
proposed CUDA-based implementation of Chung’s algorithrdompared to the CPU implementation which uses a single
In order to evaluate our proposed acceleration methods, ware. In this table, the total execution time consists of CPU
set several objectives for our experiments below. time and GPU time. Furthermore, the GPU time consists of

1) Measuring the kernels' performance by comparing erPSt to device (D~ H) memory transfer time, kernel time(s),

cution times among our CUDA-based implementatiorfd'd the device to host (H> D) memory transfer time.
and a CPU-based of our optimization. Based on Table Ill, the total execution times of our single



TABLE Il TABLE IV
DETAIL OF TOTAL EXECUTION TIME FOR EACH IMPLEMENTATION. MEMORY BANDWIDTH COMPARISON BETWEENCUDA-BASED AND
CPU-BASED VCD DEMOSAICING IMPLEMENTATION.

Detail Execution times (ms) _
CUDA (muftiple kernel]] CUDA (single kernel] CPU Kernel Total time (ms) Bandwidth (GB/s)| FEgp (%)
CPU time 845 136.0 5742.0 Mulii [ Single] CPU [Mulii [ Single] CPU| Multi | Single
D—H 13.5 135 — 1| 09 1441 81.2
Kernel time 178.9 370.5 — 2| 6.2 122.5 69.0
H— D 65.9 65.9 — 3| 55 363.4 200.4
Total time 342.8 586.8 5742.0 4| 1.6|370.5|5742.01101.4| 7.3 |42.6| 57.1| 4.1
5]152.6 15.2 8.5
6| 9.3 90.3 50.9
7] 2.8 131.8 74.2

kernel and multiple kernel implementations were 587 ms
and 343 ms respectively, which are 9.9x and 16.8x faster
than its CPU implementation, respectively. As for the CP¥Ufficiently, which are indicated by their highz percentages.
implementation, with execution time of 5,742 ms per frame for example, theEs of kernel 3 achieved 200.4%. We
is definitely not fast enough to demosaic a RAW video streagbserved that such highiz corresponds with the high memory
consisting hundreds of thousands of 4K frames. Even if &tcess count inside the kernel. According to (5) and (6), the
of four X5450 cores is used to perform Chung's algorithiiptal access count for eadh, , is 80. Since those accesses
in parallel, the execution time would be still slower than OUkre performed by reading data from the fast shared memory,
CUDA-based implementations. a high E is obtained. This indicates that kernel 3 uses the
shared memory effectively.

B. Efficiency Analysis of CUDA-based Implementations On the other hand, kernel 2 and 6 only achieved about half

Two metrics known as memory bandwidth and floating poiff GTX 480 peak memory bandwidth. AccoArgingA‘t/o (1)-3).
operations per second (FLOPS) are widely used to measlj nel 2 refers 19 cells for eadh, , to computey,,, g, ,,, and
the effectiveness of CUDA kernels. Given a measured kerrdely: @nd kernel 6 which minimizes global memory transfer

bandwidth by;, peak GPU bandwidttbr, measured kernel for (16)—(18) also refers 19 cells for eaéh , to interpolate
FLOPS performancgy;, and peak GPU FLOP$;, one can the rest of channels. Theoretically, both kernels should achieve

calculate kernel's bandwidth effectiveneBs; = by, /by and Memory bandwidth abgutaquarter of kernel 3, since their total
kernel's FLOPS performance effectivenesg = fy/fr. Memory access count |s_afactor on.24 times of kernel 3. Both
When Ep < Ep the kernel is said to benemory-bound kernels’ E confirmed this hypothesis, where the numbers are
otherwise the kernel is said to kmrithmetic-bound Also, aPout a quarter of kernel 3E.

when Ep > 1, the kernel is said to use the shared memominally, while the CPU implementation does not seem to be
effectively. The nVidia GTX 480 used for this experiment hafast enough, it is actually very efficient by looking at its
abr of 177.4 GB/s and g1 of 1344.96 GFLOPS. bandwidth number. A memory bandwidth of 42.62 GB/s which

To evaluate the efficiency of the proposed acceleration meffl €xceeds peak DDR3 bandwidth of 10.6 GB/s by about
ods, we chose to analyze and compare the memory bandwiifi9% indicates that 1) the CPU-based implementation uses

of both CUDA-based implementations and CPU-based implgPU cache pretty well and 2) performing Chung’s algorithm
mentations. on a 4K frame is very memory intensive.

Table IV presents the further breakdown of kernel times for the VI]. CONCLUSION AND FURTHER WORK

CUDA-based multi kernels implementation. In this table, ker-

nel 5 contains the isolated code of green channel interpolatidfe have presented a CUDA-based acceleration of Chung’s
step. Based on results shown in Table IV, by isolating greelemosaicing algorithm. The acceleration strategy we proposed
channel interpolation in one kernel and eliminating unusexnsists of two methods, which are 1) implementing the
input data in that kernel, we are able to reduce the total kerradgjorithm as multiple kernels to separate the bottleneck portion
time of single kernel implementation from 370.5 ms to 178.8f the algorithm from the rest and to minimize idle threads,
ms, which represents a 2.1x speedup. At the same time, arel 2) reducing I/O between shared and global memory when
are also able to increase its memory bandwidth from 7.3 GBierforming the green channel interpolation step by separating
to 15.2 GB/s which represents a 2.1x increase. the input RAW data.

Meanwhile, since the wavefront processing on kernel 5 peur experimental results show that methods 1) and 2) suc-
forms atO(w + h) steps, it only yieldsEg of 8.5% even ceeded in accelerating the kernel time by a factor of 2.1x
after we applied our optimizations. This kernel actually takdaster than its single kernel counterpart. Additionally, we
about 85.2% of the total kernel execution time in our multiplalso discover that the green channel interpolation step which
kernels version. Therefore, it is still able to benefit from angecomes the bottleneck of the implementation spends 85.2%
further memory-based optimizations. of the total kernel time.

We are also able to let other computation phases to perfoAs future work, we plan to extend the implementation to



support multiple GPUs usage. We also plan to further increase
the performance of green channel interpolation kernel by
reducing idle threads during wavefront computation.

ACKNOWLEDGMENT

This work was partly supported by JSPS Grant-in-Aid for
Young Researchers (B)(23700057) and Scientific Research
(B)(23300007). The authors would like to thank the anony-
mous reviewers for their helpful comments to improve the
quality of the paper.

(1]

[2]
(3]

(4]
(5]

(6]

(7]
(8]
(9]

[10]
[11]

(12]

(23]

[14]

[15]

[16]

REFERENCES

B.K. Gunturk, J. Glotzbach, Y. Altunbask, R.W. Schafer, and R.M.
Mersereau, “Demosaicing: color filter array interpolatiofEEE Signal
Processing Magazinevol. 22, no. 1, pp. 44-54, (2005).

B.E. Bayer, “Color imaging array,” U.S. Patent 3 971 065, July 1976.
K.H. Chung, and Y.H. Chan, “Color Demosaicing Using Variance of
Color Differences,"IEEE Transactions on Image Processingl. 15,
Issue 10, pp. 2944—-2955 (2006).

NVIDIA Corporation, “CUDA PROGRAMMING GUIDE 4.0” (2011).

M. McGuire, “Efficient, High-Quality Bayer Demosaic Filtering on
GPUs,” Journal of Graphics, GPU, and Game Topiml. 13, issue 4,
pp. 1-16 (2008).

H.S. Malvar, L.W. He, and R. Cutler, “High quality linear interpolation
for demosaicing of Bayer-patterned color imagedjtrosoft Research
(2004).

J. Stam and J. Fung, “Image De-Mosaicing,” GPU COMPUTING GEMS
EMERALD EDITION, Morgan Kaufmann, pp. 583-398 (2011).

C.E. Duchon, “Lanczos filtering in one and two dimensiods{irnal of
Applied Meteorology and Climatologyol. 18, pp. 1016-1022 (1979).
J.F. Hamilton and J.E. Adams, “Adaptive color plane interpolation in
single sensor color electronic camera”, U.S. Patent 5 629 734 (1997).
IRIDAS, http://www.iridas.com (2009).

NVIDIA Corporation: “CUDA Visual Profiler”,
http://developer.nvidia.com/nvidia-visual-profiler (2011).

J. Mairal, M. Elad, and G. Sapiro, “Sparse Representation for Color
Image Restoration,JEEE Transactions on Image Processingl. 17,
issue 1, pp. 53-69 (2011).

D. Menon and G. Calvagno G, “Color Image Demosaicking: An
overview,” Signal Processing Image Communicati¢@911).

K. McLaren, “The development of the CIE 1976 (L*a*b*) uniform
color-space and colour-difference formuladurnal of the Society of
Dyers and Colouristsvol. 92, pp. 338-341 (1976).

M. Shir, “Resources on Parallel Patterns”,
http://www.cs.uiuc.edu/homes/snir/PPP/ (2011).

NVIDIA Corporation: “CUDA Occupancy Calculator”,
http://developer.download.nvidia.com/compute/DevZone/docs/html/
C/tools/CUDA OccupancyCalculator.xls (2011).



