
Acceleration of Variance of Color
Differences-Based Demosaicing Using CUDA

Muhammad Ismail Faruqi∗, Fumihiko Ino†, and Kenichi Hagihara‡

Graduate School of Information Science and Technology, Osaka University
1-5 Yamadaoka, Suita, Osaka 565-0871, Japan

Email: {i faruqi∗, ino†, hagihara‡}@ist.osaka-u.ac.jp

Abstract—Image demosaicing algorithms are used to reconstruct
a full color image from the incomplete color samples output
(RAW data) of an image sensor overlaid with a Color Filter
Array (CFA). Better demosaicing algorithms are superior in
terms of acuity, dynamic range, signal to noise ratio, and artifact
suppression, which make them suitable for high quality delivery
such as theatrical broadcast.

In this paper, we present our efforts in examining the feasibility
of exploiting the Graphics Processing Unit (GPU) as an emerging
accelerator to create an on-the-fly implementation of Variance of
Color Differences (VCD) demosaicing, a state-of-the-art heuristic
demosaicing algorithm developed to eliminate false-color artifacts
in texture region of images.

Our efforts in this paper are 1) implementing the algorithm as
several kernels to separate the bottleneck portion of the algorithm
from the rest and to minimize idle threads and 2) reducing
I/O between shared and global memory when performing green
channel interpolation by separating the input RAW data into four
channels. We then compare the implementation featuring both
acceleration methods with a single kernel implementation. Based
on experimental results, our proposed acceleration methods
achieved per-frame processing time of 343 ms on an nVidia GTX
480, which translates into 2.95 fps. Additionally, our proposed
methods were also able to accelerate the kernel time and the
effective memory bandwidth by a factor of 2.1x compared with
its single kernel counterpart.

Keywords—Parallel processing; image demosaicing; CUDA; GPU

I. I NTRODUCTION

Image demosaicing [1] is an integral part of color imaging
pipeline. It is the first step of the pipeline, in which the
luminance data known as RAW data in each photosite is
expanded into RGB values. One method to evaluate the quality
of demosaicing algorithms is to measure how effective they
approximate the remaining color values while not introducing
artifact known as moiŕe. The less moiŕe introduced in the de-
mosaiced images, the better quality the demosaicing algorithm
is.

However, sophisticated demosaicing algorithms tend to be
computationally expensive and impractical to be implemented
on almost all digital cameras. Therefore, demosaicing algo-
rithms used in many digital cameras are generally favoring
execution speed over quality, resulting pictures with moiré.
Hence, to enable users accessing higher quality images,

higher-end cameras offer a feature to directly record RAW data
into storage without going through the entire imaging pipeline.
Such data is then processed by some external processors
capable executing demosaicing in shorter time.

In another spectrum, users of video cameras equipped with
Bayer filter [2] have suffered by the long time and huge space
required to acquire high quality files from their camera. To
process the files, users have to wait for a long time until
the demosaicing algorithm finishes processing the frames, and
then saving the demosaiced file into storage. Here lie the
challenges this paper is going to solve: to enable users acquire
high quality demosaicing result from high resolution video
files quickly without having to store large demosaicing result
into storage.

In this paper, we propose an acceleration of Variance of Color
Differences (VCD) [3]-based demosaicing, a high quality
demosaicing algorithm specifically developed to combat moiré
in texture region of images, using Compute Unified Device
Architecture (CUDA) [4]. The objective of this implemen-
tation is to demosaic video RAW files on-the-fly as fast as
possible, so that the video editing workflow will be accelerated
and the storage requirement to work on demosaicing result
can be eliminated. To achieve this, we first introduce the
wavefront processing as the base method of the algorithm
parallelization. We then propose two implementation methods,
which are 1) implementing the algorithm as multiple kernels
to separate the bottleneck portion of the algorithm and to
minimize idling threads, and 2) reducing input and output
transfer between global and shared memory [4] in the green
channel interpolation phase by separating the input RAW data
into separate channels.

II. RELATED WORK

Several works have been dedicated to implement demosaicing
using GPU. For example, McGuire [5] accelerated Malvar-
He-Cutler [6] image demosaicing algorithm using OpenGL in
real-time speed. Fung et al. [7] show two examples of CUDA-
based demosaicing based on bilinear and Lanczos [8] method.
However, these algorithms have inferior moiré suppression
compared to Chung’s algorithm. The first commercial appli-
cation known to deliver real-time preview and grading for 4K
RAW was IRIDAS [10] Speedgrade XR which was launched

in 2009. However, based on its high speed, we suspect it
to perform a demosaicing algorithm with low complexity,
although the exact algorithm is closed.

Meanwhile, recent high-quality demosaicing algorithms in-
clude Mairal et al. [12] algorithm. This algorithm along with
VCD has a high CPSNR figure. However, Menon et al. [13]
benchmarks recent demosaicing algorithms including Mairal’s
and Chung’s algorithm, and we found Chung’s algorithm has
the best CIELab [14] figure which closely resembles human
eye evaluation result.

III. VARIANCE OF COLOR DIFFERENCES(VCD)
DEMOSAICING (CHUNG’ S ALGORITHM)

This section explains VCD-based demosaicing. VCD is a
demosaicing algorithm developed by Chung and Chan [3] to
suppress artifact known as moiré when demosaicing Bayer
CFA. It extends Adaptive Color Plane Interpolation (ACPI)
algorithm [9] by heuristically determining the interpolation
direction of the green channel. In this paper, we describe
Chung’s algorithm as an algorithm consisting of four steps
explained from section III-A to section III-D.

For the rest of the explanation of Chung’s algorithm, we will
denote the value of a sampling position from the input RAW
data at(x, y) coordinate asPx,y. EachPx,y is overlaid by a
color filter element whose channel type is either red, green, or
blue. The output of the algorithm is an image with complete
information in each sampling position, where the red, green,
and blue channel values at(x, y) will be addressed asrx,y,
gx,y, andbx,y respectively.

The problem of a demosaicing algorithm for Bayer CFA is to
interpolate two missing channel values in eachPx,y. It needs
to interpolategx,y and bx,y at red CFA sampling positions,
rx,y and bx,y at green CFA sampling positions, andrx,y and
gx,y at blue CFA sampling positions. By completing all of
those channels, we construct a full color image from a RAW
image with Bayer CFA.

A. Precalculation of Three Green Channel Values at Red and
Blue CFA Sampling Positions

As the first step, the algorithm precalculates green channel val-
ues for each pixel on blue and red CFA sampling positions in
horizontal (̂gHx,y), vertical (̂gVx,y), and diagonal (̂gDx,y) direction.
They are obtained as follows:

ĝHx,y =
Px−1,y + Px+1,y

2
+

2Px,y − Px−2,y − Px+2,y

4
, (1)

ĝVx,y =
Px,y−1 + Px,y+1

2
+

2Px,y − Px,y−2 − Px,y+2

4
, (2)

ĝDx,y =
Px−1,y + Px+1,y + Px,y−1 + Px,y+1

4

+
4Px,y − Px−2,y − Px+2,y − Px,y−2 − Px,y+2

8
.(3)

In the actual algorithm, those values are computed on-the-
fly while interpolating green channel. However, since those
values are used frequently in green channel interpolation
phase, moving those values calculation into precomputation
will reduce its execution steps fromO(w+h) steps intoO(1)
steps.

B. Interpolation of Green Channel Values at Red and Blue
CFA Sampling Positions

The next step, which is the contribution of Chung and Chan
is to heuristically interpolate green channel at red and blue
CFA sampling positions. First, they classify whether a CFA
sampling position belongs to a texture or to an edge. This
is achieved by computing an edge classifierex,y, which is
obtained from summing the difference of the neighboring
pixels in horizontal (LH) and vertical (LV) direction. The
values ofex,y, LH , andLV are obtained from (4), (5), and
(6) respectively.

ex,y = max

(
LH

LV
,
LV

LH

)
, (4)

LH =
∑

−2≤dy≤2

 ∑
−2≤dx≤2,x̸=0

|Px+dx,y+dy − Px,y+dy|

,

(5)

LV =
∑

−2≤dx≤2

 ∑
−2≤dy≤2,y ̸=0

|Px+dx,y+dy − Px+dx,y|

.

(6)

The CFA sampling position is classified as an edge ifex,y ≥
T , whereT is a predefined threshold by user. Its green channel
valuegx,y can then be interpolated according to (7).

gx,y =

{
ĝH, if LH < LV ,
ĝV, otherwise.

(7)

On the other hand, the CFA sampling position is classified as a
texture if ex,y < T . Chung and Chan stated that for a texture,
three variance of color differences values can additionally
supplied to increase the accuracy of the interpolation direction
for this CFA sampling position. Those values are variance of
color differences in horizontal, vertical, and diagonal direc-
tions which are obtained by computing (8)–(10).

Hσ2
x,y =

1

9

∑
i∈Ψ

((dx+i,y)−
1

9

∑
j∈Ψ

(dx+j,y)), (8)

V σ
2
x,y =

1

9

∑
i∈Ψ

((dx,y+i)−
1

9

∑
j∈Ψ

(dx,y+j)), (9)

Dσ2
x,y =

1

2
(
1

9

∑
i∈Ψ

((fx+i,y)−
1

9

∑
j∈Ψ

(fx+j,y))

+
1

9

∑
i∈Ψ

((fx,y+i)−
1

9

∑
j∈Ψ

(fx,y+j))), (10)

where Hσ2
x,y, V σ

2
x,y, and Dσ2

x,y denote variance of color
differences in horizontal, vertical, and diagonal directions
respectively. The range of those summations is defined by
Ψ = {0,±1,±2,±3,±4}．Furthermore, dx+i,y, dx,y+i,
fx+i,y, andfx,y+i are defined with (11)–(14).

dx+i,y =

Px+i,y − gx+i,y, if i = −4,−2,
Px+i,y − ĝHx+i,y, if i = 0, 2, 4,
dx+i−1,y+dx+i+1,y

2 , if i = ±1,±3,

(11)

dx,y+i =

Px,y+i − gx,y+i, if i = −4,−2,
Px,y+i − ĝVx,y+i, if i = 0, 2, 4,
dx,y+i−1+dx,y+i+1

2 , if i = ±1,±3,

(12)

fx+i,y =

Px+i,y − gx+i,y, if i = −4,−2,
Px+i,y − ĝDx+i,y, if i = 0, 2, 4,
fx+i−1,y+fx+i+1,y

2 , if i = ±1,±3,

(13)

fx,y+i =

Px,y+i − gx,y+i, if i = −4,−2,
Px,y+i − ĝDx,y+i, if i = 0, 2, 4.
fx,y+i−1+fx,y+i+1

2 , if i = ±1,±3.

(14)

Finally, the green channel valuegx,y can be interpolated by
(15).

gx,y =

ĝH, if Hσ2

x,y = min(Hσ2
x,y,V σ2

x,y,D σ2
x,y),

ĝV, if V σ
2
x,y = min(Hσ2

x,y,V σ2
x,y,D σ2

x,y),
ĝD, if Dσ2

x,y = min(Hσ2
x,y,V σ2

x,y,D σ2
x,y).

(15)

C. Interpolation of Red and Blue Channel Values on Green
CFA Sampling Positions

Using the result of the interpolated green channel, we can
compute the values of red and blue channels on green CFA
sampling positions. To do this, we interpolatehx,y value
horizontally andvx,y value vertically at(x, y) according to
(16) and (17).

x

y

(a)

x

y

(b)

Figure 1. (a) The location of green CFA sampling position surrounded by red
CFA horizontally and blue CFA sampling positions vertically. (b) The location
of green CFA sampling position surrounded by blue CFA horizontally and red
CFA sampling positions vertically.

hx,y = gx,y +
Px−1,y − gx−1,y + Px+1,y − gx+1,y

2
, (16)

vx,y = gx,y +
Px,y−1 − gx,y−1 + Px,y+1 − gx,y+1

2
. (17)

Those two values are then assigned as interpolated blue or
green channel value, according to the location of the sampling
position. If it is located as Fig. 1(a) shows, the missing red
and blue values will be assigned asrx,y = hx,y, bx,y = vx,y,
otherwise if it is located as Fig. 1(b) they will be assigned as
bx,y = hx,y, rx,y = vx,y.

D. Interpolation of Red Channel Values on Blue CFA Sam-
pling Positions and Blue Channel Values on Red CFA Sam-
pling Positions

Finally, we interpolate the red channel value at blue CFA
sampling positions, and the blue channel value at red CFA
sampling positions. The equation for red channel value inter-
polation is described in (18). The value for the blue channel
at red CFA sampling positions is also computed in the same
fashion.

rx,y = gx,y+
1

4

∑
dy=±1

∑
dx=±1

(Px+dx,y+dy−gx+dx,y+dy) (18)

IV. PARALLELIZATION STRATEGIES OFCHUNG’ S

DEMOSAICING ALGORITHM

In this chapter, we will describe the parallelization strategy
we have gone through in accelerating Chung’s demosaicing
algorithm. We choose CUDA as the platform to accelerate
Chung’s algorithm since it has the data parallelism, where the
GPU has potential to perform it faster than the CPU.

As an overview, we start by explaining the wavefront method
which we believe is the natural parallelization method for

X-4 X-3 x-2 x-1 x x+1 x+2 X+3 X+4

y-4

y-3

y-2

y-1

y

y+1

y+2

y+3

Y+4

(a)

(b)

Figure 2. (a) An illustration of data dependencies when interpolating the
green channel atPx,y . The light green box indicates interpolated green
channel values, and the arrows indicates the direction of the dependency.
(b) An example of wavefront processing. Here, one thread is responsible to
interpolate the green channel at one sampling position. Threads in the same
anti diagonal, i.e. thread wave, are executed in parallel. Meanwhile, each
thread waves are executed sequentially.

data dependency introduced by (11)–(14). We then propose
two strategies to accelerate Chung’s algorithm, which are 1)
separating data-dependent portion from the rest of computation
by implementing Chung’s method as multiple kernels and 2)
reducing idling threads during I/O transfer by separating input
data into several channels.

A. Parallel Processing by Wavefront Method

In the green channel interpolation phase of Chung’s algorithm,
(11) and (13) require previous green channel interpolation
results ofPx−2,y andPx−4,y, meanwhile (12) and (14) require
previous interpolation result ofPx,y−2 and Px,y−4. This
implies a form of data dependency which is illustrated in
Fig. 2(a). As a result,Px,y is dependent to the green channel
interpolation results atPx−2,y, Px−4,y, Px,y−2, andPx,y−4.
Therefore, we hypothesize that the natural parallelization
method for this phase while guaranteeing the required data
dependency is by a wavefront processing method [15] which
is illustrated by Fig. 2(b).

To conform with CUDA’s hierarchical execution model [4],
the implementation of the wavefront method for Chung’s
algorithm in this paper consists of two levels: thegrid-level
and theblock-level. Fig. 3 illustrates the grid-level wavefront

Block

(1,0)

Block

(0,1)

Block

(m-1,n-1)

m = 3

n = 3

Figure 3. The execution areaP is divided intom × n blocks. Herem =
3, n = 3, α = 4, andβ = 3. A block waveDk consists of all blocks with
the samek = m+ n. For example, block(0, 1) and (1, 0) belong toD1.

processing. At the grid-level, the RAW dataP with width
w and heighth is divided into m × n blocks. Each block
has widthα and heightβ, hencem = ⌈w

α ⌉ and n = ⌈h
β ⌉.

All blocks wherek = m + n are grouped into ablock wave
Dk. The application processes the block waves sequentially
starting from top left to bottom right, where block wave
Dk−1 is processed before block waveDk. Each block wave
is mapped into a CUDA kernel launch with one dimensional
grid size. In CUDA, synchronization between block waves is
done automatically between kernel launches.

Inside a block, if a pixelPx,y hasex,y < T , it is mapped into
a thread. All threads with thread index(tx, ty) are grouped as
a thread waveTv, wherev = tx+ ty. The kernel consists of a
loop in which each thread decides to process a pixel or not in
the wave depending on its thread index. The thread waves
are processed sequentially, whereTr−1 is executed before
Tr. Between each thread wave execution, synchronization is
performed once. Fig. 2(b) illustrates the block-level wavefront
processing. In CUDA, synchronization between thread waves
is accomplished manually by__synchthreads() function
provided by the CUDA Software Development Kit (SDK).

The computation of thread waves inside a block is performed
in α+ β − 1 steps, while the computation of the entire block
waves is performed inm + n − 1 steps. Hence, this CUDA-
based wavefront method takes a totalw + h + m(β − 1) +
n(α− 1)− (α− β − 1) steps to interpolate the green channel
at blue and red CFA sampling positions. In other words, it has
O(w+ h) steps which will potentially become the bottleneck
of the application.

B. Separation of Data-dependent Portion from the Rest of
Computation

Fig. 4 illustrates that although in the green channel interpo-
lation stepPx,y depends on the previous interpolation result
of its neighbors, the rest of steps are independent and can be
accelerated by an embarrassingly parallel method. Hence, if all
of four Chung’s algorithm’s steps are implemented as a single
monolithic kernel, the performance of the phases without any
data dependency will be hindered by the bottleneck mentioned

Fully parallel

Data dependent

Fully parallel

Monolithic kernel
Kernel 1 Kernel 2

Kernel 3

Fully parallel Data dependent

Fully parallel

Single kernel implementa�on Mul�ple kernel implementa�on

Figure 4. When the algorithm is implemented as a single monolithic kernel,
the performance of data-independent portions of calculation will be reduced
by the bottleneck portion of the algorithm.

TABLE I
FINAL KERNEL LIST.

Step Remarks Area Kernel

N/A Transfers data from host to global
memory.

R N/A

— Converts input from unsigned short
to float.

R 1

1 Precomputes temporary green
channels.

Q 2

2 Performs edge detection. P 3
— Performs the channel separation of

input RAW data.
R 4

2 Calculate variance values and inter-
polate G channel value.

P 5

3 & 4 Interpolate the rest of the channels. P 6
— Combine per-channel float-typed

output data into unsigned short
RGBA data.

R 7

N/A Transfers data from global to host
memory.

R N/A

before. On the other hand, if the algorithm is implemented as
several kernels, the bottleneck portion can be isolated into its
own kernel without hindering other steps’ performance.

Based on this fact, we propose to classify the computation
steps in Chung’s algorithm based on their data dependency.
The classification policies are:

1) The computation phase with data dependency is sepa-
rated from the rest and is implemented as one kernel.

2) The computation phases without any data dependency
are united together into one kernel.

Based on those policies, because there is only one step with
data dependency, we logically need to implement Chung’s
algorithm as three CUDA kernels: 1) a kernel that performs
all computations before green channel interpolation phase, 2)
a kernel to perform the green channel interpolation step, and
3) a kernel that handles the rest of computations. However,
due to optimization schemes introduced in Sec. IV-C–IV-D,
the implementation is finally implemented as seven kernels as
shown in Table I.

w

h

Avar
Avar

P Q R

Agrn

Agrn

max(Agrn,Avar)

max(Agrn,Avar)

Figure 5. Computation areas.R denotes the execution area of input loading
phase.Q denotes the computation area of precomputation of green channel
values phase, whereP denotes the computation area of other phases.

C. Classification Based on Differences of Kernel Execution
Area

Besides the data dependency-based separation policies ex-
plained in Section IV-B, another factor that must be considered
when implementing a CUDA kernel is that if each kernel han-
dles different computation areas, there will be idling threads
which will lead into kernel ineffectiveness. A computation
area is defined as an area in which a kernel will store its
computation result into.

Fig. 5 illustrates different computation areas of each step. The
computation area for step 1 which computesĝHx,y, ĝVx,y, and
ĝDx,y is denoted byQ. Based on (11) and (13),dx,y andfx,y
calculations in step 2 requirêgHx,y andĝDx,y in positive direction
with maximum rangeAvar = x + 4. Additionally, (12) and
(14) implies that step 2 also requiresĝVx,y and ĝDx,y in positive
direction with maximum rangeAvar = y + 4. Hence, Q has
width w +Avar and heighth+Avar.

Meanwhile, based on (1)–(3), to computeQ, we require values
of neighboring pixel within a maximum radius ofAgrn in
horizontal and vertical directions as input. In [3], Chung
definesAgrn = 2. Hence, the required data that must be loaded
into global memory [4] and converted to floating point type
to accommodate all calculation phases exists in areaR, which
has widthw + Avar + Agrn + max(Avar, Agrn) and height
h+Avar +Agrn +max(Avar, Agrn).

As mentioned above, if different areas are processed by the
same kernel, there will be idling threads when computing the
phase with least area. Fig. 6 shows an example where threads
are idling in block(0, 0) and in block(m − 1, n − 1) when
computingP . This problem happens because the kernel with
m×n thread blocks tries to processP , Q, andR in different
steps.

To solve this problem, we propose to do further classification
of the computation steps based on the following policies:

1) Separate the kernel which contains different computation
areas into multiple kernels according to its computation
area.

2) Combine any subsequent computation steps which have

P Q R

m-1,n-1

0,0

Idle threads when compu!ng P

Idle threads when compu!ng P

Figure 6. Idle threads that will happen if P, Q, and R are processed by a same
kernel. Each cell represents a thread. Gray-colored cells are busy threads, and
white-colored cells are idle threads.

the same computation area into one kernel.

Based on the policies above, since kernel 1, 2, and 3 on Table
I processesR, Q, andP , we decide to separate those process
into three kernels. Similarly, since kernel 6 performs two steps
described in Section III-C and III-D inP , we can combine
them into one kernel.

D. Reducing Input Loading Time of the Green Channel Inter-
polation Phase by Separating Input Data

We noticed that in (11)–(14), the only neighbors accessed in
input data and output data byPx,y only Px+α,y+α, where
α = ±2,±4. Furthermore, all neighboring CFAs ofPx+α,y+α

have the same CFA as the CFA being computed, and other
CFAs are not used.

Based on this fact, in order to save computation time from
loading unnecessary CFAs, we propose to separate all values in
input data at the same CFA into their own matrix in a separate
kernel. Specifically, the input RAW dataP is separated into
four matricesR, B, GR, andGB in place. MatrixR will hold
values from red CFA, matrixGR will hold green CFAs which
are surrounded horizontally by two red CFAs, matrixB will
hold blue CFAs, and finally matrixGB will hold green CFAs
which are surrounded horizontally by two blue CFAs. ForP
with width w and heighth, the width and height of matrices
R, B, GR andGB will be w/2 andh/2, respectively.

Since kernel 5 in Table I that handles green channel inter-
polation phase is executed multiple times by the wavefront
processing, we hypothesize that this optimization will help
reduce its total execution time. In this paper, we implement
the input separation phase as a kernel which is launched after
the edge detection kernel is executed. This kernel is denoted as
Kernel 4 in Table I. As the final result of those optimizations,
the algorithm is implemented as 7 kernels.

V. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we present the experimental results of our
proposed CUDA-based implementation of Chung’s algorithm.
In order to evaluate our proposed acceleration methods, we
set several objectives for our experiments below.

1) Measuring the kernels’ performance by comparing exe-
cution times among our CUDA-based implementations
and a CPU-based of our optimization.

TABLE II
SPECIFICATION OF THE EXPERIMENT MACHINE.

Item Value

Processor Intel Xeon X5450, 3 GHz, 4 cores
Memory DDR3 8 GB
GPU nVidia GeForce GTX 480
GPU Memory GDDR5 1.5 GB
Operating System Windows XP 64-bit XP3
CUDA Version 4.0
IDE Visual Studio 2005

2) Measuring the efficiency of optimization methods in
terms of execution time, floating point operation per
second (FLOPS), and memory bandwidth.

The specifications of the machine used for executing the
experiments are shown in Table II.

As we do not have access to any video camera capable of
outputting a RAW image with 4K resolution, we chose to
simulate it by using a RAW image from a still digital camera
with nearly similar resolution. The RAW image frame used as
input for our experiment has size of 4608× 3072 pixels, and
uses a Bayer type CFA.

To determine the optimum block widthα, width β, and
register countr combination for each kernel, we performed
the following experiment. First, for each kernel we choose
several(α, β) whose static shared memory size [4] fits in a
device. Next, using each(α, β) we ran the kernel with an
arbitrary number of registers using CUDA Visual Profiler [11]
to obtain its static memory size. We then input the obtained
static memory size,α, and β into the CUDA Occupancy
Calculator [16] to get the biggest register countropt that results
the highest occupancy number. Thisropt will give the fastest
result for its correspondingα andβ. Finally, we compare the
results of each(α, β, ropt) combination and chose the fastest
one.

A. Performance Evaluation

We used two CUDA implementations, which are a monolithic
kernel version and a multiple kernels version which imple-
mented our acceleration methods. The first version performs
wavefront processing on all interpolation steps of Chung’s
algorithm, while the multiple kernels version only performs
wavefront processing on the green channel interpolation step,
and processes other steps using embarassingly parallel meth-
ods. We will refer the monolithic kernel version as the single
kernel version hereafter.

We start the evaluation by presenting Table III, which shows
the total execution time of our GPU implementations while
compared to the CPU implementation which uses a single
core. In this table, the total execution time consists of CPU
time and GPU time. Furthermore, the GPU time consists of
host to device (D→ H) memory transfer time, kernel time(s),
and the device to host (H→ D) memory transfer time.

Based on Table III, the total execution times of our single

TABLE III
DETAIL OF TOTAL EXECUTION TIME FOR EACH IMPLEMENTATION.

Detail
Execution times (ms)

CUDA (multiple kernel) CUDA (single kernel) CPU

CPU time 84.5 136.9 5742.0
D → H 13.5 13.5 —
Kernel time 178.9 370.5 —
H → D 65.9 65.9 —
Total time 342.8 586.8 5742.0

kernel and multiple kernel implementations were 587 ms
and 343 ms respectively, which are 9.9x and 16.8x faster
than its CPU implementation, respectively. As for the CPU
implementation, with execution time of 5,742 ms per frame it
is definitely not fast enough to demosaic a RAW video stream
consisting hundreds of thousands of 4K frames. Even if all
of four X5450 cores is used to perform Chung’s algorithm
in parallel, the execution time would be still slower than our
CUDA-based implementations.

B. Efficiency Analysis of CUDA-based Implementations

Two metrics known as memory bandwidth and floating point
operations per second (FLOPS) are widely used to measure
the effectiveness of CUDA kernels. Given a measured kernel
bandwidth bM , peak GPU bandwidthbT , measured kernel
FLOPS performancefM , and peak GPU FLOPSfT , one can
calculate kernel’s bandwidth effectivenessEB = bM/bT and
kernel’s FLOPS performance effectivenessEF = fM/fT .
When EB < EF the kernel is said to bememory-bound,
otherwise the kernel is said to bearithmetic-bound. Also,
whenEB ≥ 1, the kernel is said to use the shared memory
effectively. The nVidia GTX 480 used for this experiment has
a bT of 177.4 GB/s and afT of 1344.96 GFLOPS.

To evaluate the efficiency of the proposed acceleration meth-
ods, we chose to analyze and compare the memory bandwidth
of both CUDA-based implementations and CPU-based imple-
mentations.

Table IV presents the further breakdown of kernel times for the
CUDA-based multi kernels implementation. In this table, ker-
nel 5 contains the isolated code of green channel interpolation
step. Based on results shown in Table IV, by isolating green
channel interpolation in one kernel and eliminating unused
input data in that kernel, we are able to reduce the total kernel
time of single kernel implementation from 370.5 ms to 178.9
ms, which represents a 2.1x speedup. At the same time, we
are also able to increase its memory bandwidth from 7.3 GB/s
to 15.2 GB/s which represents a 2.1x increase.

Meanwhile, since the wavefront processing on kernel 5 per-
forms atO(w + h) steps, it only yieldsEB of 8.5% even
after we applied our optimizations. This kernel actually takes
about 85.2% of the total kernel execution time in our multiple
kernels version. Therefore, it is still able to benefit from any
further memory-based optimizations.

We are also able to let other computation phases to perform

TABLE IV
MEMORY BANDWIDTH COMPARISON BETWEENCUDA-BASED AND

CPU-BASED VCD DEMOSAICING IMPLEMENTATION.

Kernel
Total time (ms) Bandwidth (GB/s) EB (%)

Multi Single CPU Multi Single CPU Multi Single

1 0.9

370.5 5742.0

144.1

7.3 42.6

81.2

4.1

2 6.2 122.5 69.0
3 5.5 363.4 200.4
4 1.6 101.4 57.1
5 152.6 15.2 8.5
6 9.3 90.3 50.9
7 2.8 131.8 74.2

efficiently, which are indicated by their highEB percentages.
For example, theEB of kernel 3 achieved 200.4%. We
observed that such highEB corresponds with the high memory
access count inside the kernel. According to (5) and (6), the
total access count for eachPx,y is 80. Since those accesses
are performed by reading data from the fast shared memory,
a highEB is obtained. This indicates that kernel 3 uses the
shared memory effectively.

On the other hand, kernel 2 and 6 only achieved about half
of GTX 480 peak memory bandwidth. According to (1)–(3),
kernel 2 refers 19 cells for eachPx,y to computêgHx,y, ĝVx,y, and
ĝDx,y, and kernel 6 which minimizes global memory transfer
for (16)–(18) also refers 19 cells for eachPx,y to interpolate
the rest of channels. Theoretically, both kernels should achieve
memory bandwidth about a quarter of kernel 3, since their total
memory access count is a factor of 0.24 times of kernel 3. Both
kernels’EB confirmed this hypothesis, where the numbers are
about a quarter of kernel 3’sEB.

Finally, while the CPU implementation does not seem to be
fast enough, it is actually very efficient by looking at its
bandwidth number. A memory bandwidth of 42.62 GB/s which
far exceeds peak DDR3 bandwidth of 10.6 GB/s by about
400% indicates that 1) the CPU-based implementation uses
CPU cache pretty well and 2) performing Chung’s algorithm
on a 4K frame is very memory intensive.

VI. CONCLUSION AND FURTHER WORK

We have presented a CUDA-based acceleration of Chung’s
demosaicing algorithm. The acceleration strategy we proposed
consists of two methods, which are 1) implementing the
algorithm as multiple kernels to separate the bottleneck portion
of the algorithm from the rest and to minimize idle threads,
and 2) reducing I/O between shared and global memory when
performing the green channel interpolation step by separating
the input RAW data.

Our experimental results show that methods 1) and 2) suc-
ceeded in accelerating the kernel time by a factor of 2.1x
faster than its single kernel counterpart. Additionally, we
also discover that the green channel interpolation step which
becomes the bottleneck of the implementation spends 85.2%
of the total kernel time.

As future work, we plan to extend the implementation to

support multiple GPUs usage. We also plan to further increase
the performance of green channel interpolation kernel by
reducing idle threads during wavefront computation.

ACKNOWLEDGMENT

This work was partly supported by JSPS Grant-in-Aid for
Young Researchers (B)(23700057) and Scientific Research
(B)(23300007). The authors would like to thank the anony-
mous reviewers for their helpful comments to improve the
quality of the paper.

REFERENCES

[1] B.K. Gunturk, J. Glotzbach, Y. Altunbask, R.W. Schafer, and R.M.
Mersereau, “Demosaicing: color filter array interpolation,”IEEE Signal
Processing Magazine, vol. 22, no. 1, pp. 44–54, (2005).

[2] B.E. Bayer, “Color imaging array,” U.S. Patent 3 971 065, July 1976.
[3] K.H. Chung, and Y.H. Chan, “Color Demosaicing Using Variance of

Color Differences,”IEEE Transactions on Image Processing, vol. 15,
Issue 10, pp. 2944–2955 (2006).

[4] NVIDIA Corporation, “CUDA PROGRAMMING GUIDE 4.0” (2011).
[5] M. McGuire, “Efficient, High-Quality Bayer Demosaic Filtering on

GPUs,” Journal of Graphics, GPU, and Game Tools, vol. 13, issue 4,
pp. 1–16 (2008).

[6] H.S. Malvar, L.W. He, and R. Cutler, “High quality linear interpolation
for demosaicing of Bayer-patterned color images,”Microsoft Research
(2004).

[7] J. Stam and J. Fung, “Image De-Mosaicing,” GPU COMPUTING GEMS
EMERALD EDITION, Morgan Kaufmann, pp. 583–398 (2011).

[8] C.E. Duchon, “Lanczos filtering in one and two dimensions,”Journal of
Applied Meteorology and Climatology, vol. 18, pp. 1016–1022 (1979).

[9] J.F. Hamilton and J.E. Adams, “Adaptive color plane interpolation in
single sensor color electronic camera”, U.S. Patent 5 629 734 (1997).

[10] IRIDAS, http://www.iridas.com (2009).
[11] NVIDIA Corporation: “CUDA Visual Profiler”,

http://developer.nvidia.com/nvidia-visual-profiler (2011).
[12] J. Mairal, M. Elad, and G. Sapiro, “Sparse Representation for Color

Image Restoration,”IEEE Transactions on Image Processing, vol. 17,
issue 1, pp. 53–69 (2011).

[13] D. Menon and G. Calvagno G, “Color Image Demosaicking: An
overview,” Signal Processing Image Communication(2011).

[14] K. McLaren, “The development of the CIE 1976 (L*a*b*) uniform
color-space and colour-difference formula,”Journal of the Society of
Dyers and Colourists, vol. 92, pp. 338–341 (1976).

[15] M. Snir, “Resources on Parallel Patterns”,
http://www.cs.uiuc.edu/homes/snir/PPP/ (2011).

[16] NVIDIA Corporation: “CUDA Occupancy Calculator”,
http://developer.download.nvidia.com/compute/DevZone/docs/html/
C/tools/CUDA OccupancyCalculator.xls (2011).

