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6 RELATED WORK

There are some existing research projects that exploit idle
GPUs for acceleration of scientific applications. For example,
the Folding@Home distributed computing system [1] accel-
erates protein-folding simulations by a volunteer computing
approach. This system is developed using BOINC middleware
[2], which deploys a screensaver to find idle resources. As
mentioned in Section 1, this can cause significant host disrup-
tion due to resource conflicts on the GPU.

With respect to homology search, Singh et al. extended
Liu’s single-node implementation [3] to achieve further accel-
eration on a BOINC-based grid system. Their system exploits
two types of parallelism, one for coarse-grained parallelization
on computing nodes, and the other for fine-grained paralleliza-
tion on the GPU. The system throughput reaches 6.4 GCUPS
on ten dedicated nodes, each equipped with a G70 or G80
card [4]. A similar system proposed by Ino et al. [5] solves
the problem of resource conflicts. Their system monitors the
video memory usage to identify busy or idle states of the
GPU [6]. Since usage is managed by the graphics driver, this
monitoring strategy requires low overhead without disturbing
host applications that run on the GPU. They showed that a non-
dedicated GPU in their laboratory provides nearly the same
throughput as two dedicated CPUs in a cluster system.

To avoid host disruption altogether, GPU-accelerated grid
systems have relied on the use of screensavers. Further, the
GPU architecture does not currently support pre-emption.
Although NVIDIA plans to support pre-emption in future
architectures, such as the Maxwell architecture to be released
in 2013 [7], we need a mechanism to find the best tradeoff
point between the throughput of guest applications and the
undisturbed performance of host applications. Therefore, we
emphasize that the contribution of our paper will be useful to
design such future architectures and to discuss the impact of
exploiting the power of future GPUs. For example, resource
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selection and fine-grained execution mechanisms that control
the frame rate on resources can be applied to future pre-
emptive systems.

With respect to accelerating the SW algorithm, many re-
searchers have been attempting to implement the algorithm
on accelerators. To the best of our knowledge, Liu et al.
[8] were the first to implement the algorithm on the GPU.
Their implementation uses the OpenGL graphics library [9].
On a GeForce 7900 GTX card, their achieved throughput
reached 0.67 GCUPS, which is sixteen times higher than
that of a CPU-based native implementation [10]. Manavski
et al. [11] developed the first implementation that accelerates
the SW algorithm using CUDA [12]. On two GeForce 8800
GTX cards, their implementation achieved a throughput of
3.6 GCUPS, which is 20% higher than that of a CPU-based
implementation [13] optimized with single instruction multi-
ple data (SIMD) instruction sets [14]. Additional optimized
implementations [15], [16], [17], [18] have been proposed to
utilize on-chip memory resources of the GPU. The throughput
achieved by these implementations range from 5.6 to 9.6
GCUPS, depending on the graphics card.

Field-programmable gate array (FPGA) based solutions
have achieved the highest throughput for homology search.
Zhang et al. showed that an XD1000 FPGA board can
achieve 25.6 GCUPS at peak performance. Similar results
were reported by Li et al. [19], Storaasli et al. [20], and Meng
et al. [21]. Compared to other accelerators, the FPGA board
is a much more expensive and specialized piece of hardware.
Since our objective is to exploit idle cycles in a typical office
setting (i.e., without the need for high-end hardware), we focus
our research on commercial off-the-shelf graphics cards.

7 IMPLEMENTATION ISSUE

Figure 10 shows an overview of our master-worker system.
Since the master has to exchange a large number of messages
between workers, we have implemented our system using an
efficient threading model called Input/Output Completion Port
(IOCP) [22]. This model is designed for performing multiple
asynchronous I/O operations on a multiprocessor system, thus
increasing overall message throughput.
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Fig. 10. Overview of our FGCS system architecture. A
search job consists of Q independent queries. A task
is associated with each query and is assigned to idle
resources via the master-worker paradigm.

7.1 Idle Period Detection
Our system computes CPU usage by the GetSystemTimes
function, which returns idle time, kernel time, and user time
(see [23] for details). This function is provided as a part of
the Windows API [24].

The kernel execution on the GPU can be identified by
monitoring video memory usage, because the kernel con-
sumes video memory. Video memory usage is obtained via
the GetCaps function, which is part of the DirectDraw API
[25]. Since this function obtains usage information from the
graphics driver, it does not disturb host applications running on
the GPU. Thus, the overhead is less than a few milliseconds.

The update of the frame buffer frequently occurs on recent
Windows systems, which employ Windows Aero as a graphi-
cal user interface (GUI). Since this GUI is implemented by the
DirectX graphics library [25], the update of the frame buffer
consumes some GPU cycles, but does not affect video memory
usage. Rather than using a screensaver-based approach, our
system uses event handlers to monitor keyboard and mouse
activities. Our system detects keyboard and mouse events by
using the SetWindowsHookEx function, which is part of the
Windows API.

Given that the overhead of activating a screensaver is too
large to find short idle periods on the order of hundreds
of milliseconds, we opt for an event-driven approach. In
general, it takes approximately 200 milliseconds to activate
a screensaver [6]; although this overhead is acceptable for
coarse-grained cycle sharing systems, it is not small enough
for FGCS systems.

7.2 Resource Selection
Figure 11 shows pseudocode of our resource selection al-
gorithm. The master performs the task assignment using the
following threads: (1) a main thread that processes the algo-
rithm shown in Fig. 11, and (2) message handling threads that
update the list R of idle workers in response to messages they
receive. The message handling threads insert a resource entry
to list R in a sorted order when they receive a request message
from the resource indicating that the resource has become idle.
Conversely, they remove the entry when they receive a failure

Input: A set T of tasks that compose a search job
Input: A list R of idle workers
Input: Property description D specified by guests
Output: A master-worker schedule with matchmaking

1: while T 6= ∅ do
2: r ← head of list R {r = NULL if R = ∅}
3: while r 6= NULL do
4: if Worker r matches property description D then
5: Execute task t ∈ T on worker r in a non-blocking

manner
6: T ← T − {t}
7: end if
8: r ← r.next {r = NULL if the tail of R has been

reached}
9: end while

10: Wait for message handling threads to update R
11: end while

Fig. 11. Resource selection algorithm with matchmaking
[26]. This algorithm is executed by a main thread running
as master. List R of idle workers is updated via message
handling threads.

message indicating that the resource has become busy. Thus,
selection is simply a matter of assigning a task to the resource
located at the head of the list. Since list R is a shared resource
between all threads, critical sections are used to implement the
necessary locking mechanism.

This locking mechanism may cause some performance
overhead. Since list R is shared between the main thread
and the message handling threads, the overhead emerges as
a performance bottleneck (1) when workers frequently change
their resource status and (2) when the master lacks sufficient
performance to manage a large number of workers. How-
ever, these multiple threads are required by the IOCP, which
performs multiple simultaneous asynchronous operations. If
we do not use the IOCP, messages between the master and
workers are serially processed by non-overlapped operations.
Such operations can be regarded as a locking mechanism
that serializes incoming or outgoing messages. Our locking
mechanism works for a list in main memory, which has a
smaller overhead than the network device.

7.3 Modified Matrix Filling Code

Figure 12 shows pseudocode of the SW alignment algorithm
to automatically control kernel execution times for the FGCS
system. To simplify its description, we present a non-pipelined
version of the code.

According to Eq. (4), our code loads the appropriate number
L of subject sequences. In other words, the code dynamically
changes the number of TBs processed by a kernel invocation.
Recall here that a TB is responsible for processing a pair of
a query sequence and a subject sequence. Thus, the kernel
execution time is controlled by the number of TBs.
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TABLE 1
Specification of experimental machines. GIPS stands for giga instructions per second, which determines the

alignment throughput of our instruction-bound kernel.

Specification
Worker ID

#1 #2 #3 #4 #5 #6 #7 #8

OS Windows XP Windows XP Windows XP Windows XP Windows XP Windows XP Windows XP Windows Vista
CPU Xeon E5440 Xeon E5450 Xeon X5450 Xeon E5450 Xeon E5450 Xeon E5450 Xeon E5450 Xeon X5472

2.83 GHz 3.00 GHz 3.00 GHz 3.00 GHz 3.00 GHz 3.00 GHz 3.00 GHz 3.00 GHz
Main memory (GB) 32 8 32 8 8 16 8 8
GPU GeForce GeForce GeForce GeForce GeForce Quadro GeForce GeForce

GTX 285 GTX 285 GTX 285 GTX 285 GTX 285 FX 5800 GTX 295 8800 GTX
VRAM capacity (MB) 1024 1024 2048 1024 1024 4096 896×2 768
Arithmetic (GIPS) 354 354 354 354 354 311 298×2 173

Input: Kernel execution time K specified by our system
Input: Maximum batch size Lmax

Input: A query sequence
Input: Database that includes subject sequences
Output: High-score cells

1: Load a query sequence
2: n← length of loaded query sequence
3: Transfer the query sequence to video memory
4: Set coefficients X and Y according to n and hardware
5: while not eof(database) do
6: m̂← 0
7: L← 0
8: while L ≤ Lmax and K > Xnm̂ + Y dn/4eL do
9: Load a subject sequence

10: m← length of loaded subject sequence
11: m̂← m̂ + m
12: L← L + 1
13: if eof(database) then
14: break
15: end if
16: end while
17: Transfer L subject sequences to video memory
18: Invoke the matrix filling kernel to compute matrices
19: Transfer results to main memory
20: end while

Fig. 12. Pseudocode of the Smith-Waterman alignment
algorithm for an FGCS system. Our code dynamically
determines the number L of subject sequences such that
the kernel completes execution within specified time K.
This code is not pipelined to simplify its description.

8 FURTHER EXPERIMENTS

For our experiments, we used query sequences of length n
ranging from 63 to 511 amino acids. All queries were executed
against the SWISS-PROT protein database [27], which is
approximately 121 MB in size. This database contains 250,143
entries with a total of 90,588,910 amino acids. The database
was transferred to worker machines before our experiments
began.

Further, to have better load balancing between TBs, subject

sequences were sorted by length m [3], [16]. Note that this
sorting procedure does not always balance workloads, because
TBs are not guaranteed to have the same length m after
sorting. The effect of load balancing depends on the length
distribution of subject sequences within a batch.

Table 1 summarizes the specifications of the eight worker
machines used in case study. These worker machines are
owned by graduate students who develop GPU and CPU
applications for their research. The master process runs on
a Windows XP machine with an Intel Core 2 Duo E6300
CPU clocked at 1.86 GHz. Experimental machines are inter-
connected by a Gigabit Ethernet switch.

8.1 Coefficient Estimation for Performance Model

Our system estimates coefficients X and Y using linear
regression. To do so, we run the original kernel with different
configurations and measure kernel execution time. Figures
13(a) and 13(b) show the kernel execution time with different
total lengths m̂ of subject sequences and that with different
batch sizes L of subject sequences, respectively. Results in-
dicate that kernel execution time k is proportional to both m̂
and L. Since Eq. (4) describes this linear behavior, we can
estimate coefficients X and Y from the gradients of the lines
in both figures.

Table 2 shows the values of coefficients X and Y measured
on GTX 285 and 8800 GTX cards. Results indicate that the
coefficients depend on the length n of the query sequence. As
we increase n, TBs consume more register files and shared
memory, reducing the number Z of active TBs [12] that can
simultaneously run on each multiprocessor. The number Z
determines the performance behavior of the kernel.

As shown in the table, from the point of view of query
length and the number of active TBs, the coefficients can be
classified into distinct groups. For example, the GTX 285 card
has six groups: {63}, {127}, {255}, {383, 511}, {640, 768},
and {896, 1022}. Note that we separate n = 63 from n = 127
though both have the same value Z = 7. This exception is
due to the TB size, which is less than 32 when n ≤ 124. In
this case, the GPU reduces the efficiency, because the TB size
is lower than the warp size [12]. Thus, we decided to use the
mean values of X and Y for each group. For example, we
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Fig. 13. Kernel execution time k measured with length n = 255 of query sequence. (a) Results using fixed batch size
L = 8, 000 with varying total length m̂ of subject sequences. (b) Results using fixed total length m̂ = 4, 000, 000 with
varying batch size L. The gradients of each line in (a) and (b) represent coefficients X and Y , respectively.

TABLE 2
Estimated coefficients used for performance model.
Coefficients basically depend on length n of query

sequence, which determines number Z of active TBs per
multiprocessor. Some results on 8800 GTX card cannot

be obtained due to lack of resources.

Query GTX 285 8800 GTX
length X Y Active X Y Active

n (10−5) (10−4) TBs: Z (10−5) (10−4) TBs: Z

63 1.114 0.267 7 4.106 1.015 3
127 0.728 0.360 7 2.220 1.089 3
255 0.648 0.374 6 1.580 1.019 3
383 0.653 0.540 3 2.361 3.010 1
511 0.628 0.541 3 2.025 2.930 1
640 0.620 0.760 2 1.867 2.853 1
768 0.607 0.769 2 1.766 2.846 1
896 0.721 1.465 1 — — —
1022 0.665 1.518 1 — — —

used X = 0.693× 10−5 and Y = 1.491× 10−4 for the GTX
285 card when n ≥ 896.

8.2 Evaluation Results on 8800 GTX
Figure 14 shows the distribution of kernel execution time with
different lengths n of the query sequence. As compared with
the results on the GTX 285 card, the accuracy drops for the
8800 GTX card. The reason for this relatively low accuracy
can be explained by Fig. 14, where kernel execution times
reach 128 milliseconds on the 8800 GTX. This implies that
the 8800 GTX reduces the kernel efficiency if tasks are divided
into small subtasks.

Figure 15 shows the frame rate measured on the 8800 GTX
card. Similar to the results on the GTX 285 card, the frame
rate linearly increases as we decrease specified time K. In
particular, our modified kernel keeps the frame rate of 10.8
fps, whereas the original kernel drops the rate to 0.6 fps.

8.3 Task Execution Statistics
Figure 16 shows how the detected idle time is exploited for
alignment tasks. In total, the system assigns 80,347 tasks to
workers and successfully completes 63,676 tasks during the
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When K = 12, an overhead of 25% is observed on 8800
GTX due to excessive calls of kernels.

four days. Thus, we obtain a success rate of 79.7%. Worker
#1 processes the largest number (15,165) of tasks. As shown
in Fig. 5(b), this worker has the highest system uptime and
the highest idle time, so that it indeed achieves the highest
throughput among the eight workers. In contrast, worker #8
results in the smallest number (2,799) of tasks and the lowest
success rate (46.5%). This worker has idle time totaling 12
hours, which is the mean value of the eight workers. Despite
this relatively higher idle time, the success rate suffers because
worker #8 has the previous generation card. More than 3,000
tasks are cancelled on this worker because the 8800 GTX card
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Fig. 16. Task statistics. Each bar represents the number
of tasks processed over four days, whereas each line rep-
resents the corresponding success rate of task execution.

takes three times longer than the GTX 285 card. As mentioned
in Section 4.1, a query of n = 511 takes 19.6 seconds to
process a series of kernel invocations although each invocation
completes around 100 milliseconds. Worker #5 achieves the
highest success rate of 96%. Figure 5(a) implies that the owner
of this worker intensively used the GPU for his or her research.
Further, the wait time on this machine is only 12 minutes
in total. Thus, the owner rarely operates the machine in an
interactive manner, which strongly contributes to an efficient
use of idle periods.

8.4 Scheduling Tradeoff
The proper granularity can be determined experimentally using
two strategies: (1) scalability analysis based on communication
and computation time, and (2) statistical analysis based on idle
period distribution.

The scalability analysis roughly estimates the minimum
granularity that fully utilizes idle workers. Let p represent the
number of idle workers, and T1 and T2 represent the execution
time and the communication time of a task, respectively.
Assuming non-overlapping messages, the master must then
satisfy T1 ≥ T2(p − 1) in order to minimize the amount of
time it takes the workers to receive a task. In our environment,
where 0 ≤ p ≤ 14, a task must run at least 0.17× 13 = 2.21
seconds to keep workers busy during master-worker execution.

The statistical analysis gives us the expected length Texp

of idle periods. Due to the power law distribution of idle
periods, the expected length can theoretically extend to infinity.
However, this does not happen in practice, because idle periods
of office machines are limited to a specific time. Therefore,
the task granularity should be determined such that it satisfies
T1 ≤ Texp. In our logs, the expected length Texp ranges
from 4.7 to 28.8 seconds with a mean of 11.4 and a standard
deviation of 5.7. We should not maximize T1 because the
penalty of failed executions increases with T1.

Similar to the task granularity, the wait time W can de-
termine guest throughput. We estimated the throughput with
W varying from 1 to 60 seconds, as shown in Fig. 17. The
throughput decreases as we increase W . Thus, it is better
to minimize W to maximize the throughput. In contrast, the
success rate of task execution decreases as we increase W . The
idle period distribution in Fig. 3 also implies that increasing W
decreases the number of idle period detections, which prevents
frequent changes of resource status and reduces the number
of messages exchanged between the master and its workers.
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Finally, we investigated the variation of idle period distribu-
tions. Figure 18 shows some typical variations obtained from
each machine. Figure 19 presents the conditional probability
of remaining idle in the next five seconds, given an idle period
of X seconds. This figure indicates that selecting long-idle-
period workers is not always the best solution. For example,
some workers that are idle for X = 5 seconds have a higher
probability than others that are idle for X = 7 seconds.
A straightforward solution to this problem is to select high-
probability workers. However, this solution requires workers
to construct a histogram of idle period lengths. In contrast,
our approach requires workers to report just the length of
the current idle period. Another advantage of our approach is
that it gives a lower priority to interactively operated workers,
which usually have shorter idle periods.

Note that the interference occurs only at the end of idle
periods. Assuming that the master always has search jobs, the
degree of interference is represented by the total number of
idle periods. Thus, high-usage machines have sparse distribu-
tions with lower interference, as shown in Fig. 18(b).

8.5 Flexibility for Other Applications
As we mentioned in Section 4.6, three requirements must be
satisfied in order to adapt an application. The first requirement
characterizes applications that can run efficiently on network-
accessible machines. For example, parameter sweep applica-
tions are an important class of killer applications for grid and
volunteer computing systems.

The second requirement indicates the limitations of dynamic
applications that vary the kernel execution time at run-time.
For example, iterative applications may cause large interfer-
ence to hosts if the GPU determines the number of iterations
according to computational results. If such decision is done
by the CPU, our approach has the opportunity to predict the
kernel execution time. The performance model can be replaced
by a dynamic adjustment mechanism that iteratively processes
a series of tiny subtasks until reaching K = 100 milliseconds.
However, we do not select this solution because such tiny
subtasks require more kernel calls than our approach, causing
a large overhead of 25% as shown in Fig. 15.

Our solution to the last requirement is to reduce the number
of TBs per kernel invocation. This reduction is easily done
for arbitrary kernels, because TBs in CUDA have neither
constraints on their execution order nor capabilities to per-
form global synchronization. However, some types of kernels
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create a large overhead due to task division, failing to reduce
the kernel execution time. For example, sorting kernels and
reduction kernels have to write intermediate results to global
memory in order to restart their computation with the next
subtask. In contrast, some applications do not have to write
intermediate results between kernel calls. Parameter sweep
applications can be such applications, because they contain
many independent tasks which do not need to exchange com-
putational results. Actually, our kernel restarts computation
with different pairwise problems, so that intermediate results
are not produced. Furthermore, such independent tasks can be
executed in parallel by using the stream programming model
on the GPU.

Finally, we discuss on the applicability of our approach
to different application domains. Optimization is a promising
class of parameter sweep applications that can be solved by
our approach. For example, an optical propagation simulator
[28] can be accelerated to design the mask layout for integrated
circuits. To find the best layout, this simulator processes a large
number of independent tasks, each with a different layout.
Each task applies a series of convolution operations to a pair
of 64×64-pixel images, and these operations are implemented
by multiply-add and reduction kernels. The former simply
exploits data parallelism by partitioning the computational

domain. Therefore, the kernel execution time can be controlled
by the number of TBs. In contrast, the latter can create a large
overhead as mentioned above. However, this reduction kernel
completes within 5 milliseconds due to the small data size. In
this case, we are allowed to run the reduction kernel without
task division. Thus, this simulator can be implemented using
the master-worker paradigm, and each kernel can be completed
within a short timeframe.

Similar to homology search, search-based applications may
satisfy the three requirements mentioned above. As such an
example, a spectrometer system [29] can be accelerated by
our system. This system is developed for the search for
extraterrestrial intelligence (SETI) project [30], which has
demonstrated the impact of volunteer computing. The system
applies the Fast Fourier Transform (FFT) operation to stream
data. The data is organized into a series of chunks and there
is no data dependence between different chunks. Furthermore,
the chunk size can be arbitrarily changed to control the kernel
execution time.
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