
A Multi-GPU Spectrometer System for Real-time
Wide Bandwidth Radio Signal Analysis

Hirofumi Kondo∗, Eric Heien∗, Masao Okita∗, Dan Werthimer† and Kenichi Hagihara∗
∗Graduate School of Information Science and Technology

Osaka University, Japan

{h-kondou, e-heien, okita, hagihara}@ist.osaka-u.ac.jp
†Space Sciences Laboratory

University of California, Berkeley, USA

Abstract—This paper describes the implementation of a large
bandwidth multi-GPU signal processing system for radio astron-
omy observation. This system performs very large Fast Fourier
Transform (FFT) and spectrum analysis to achieve real-time
analysis of a large bandwidth spectrum. This is accomplished
by implementing a four-step FFT algorithm in Compute Unified
Device Architecture (CUDA). The key feature of this implemen-
tation is that the data size transferred between CPU and GPU
is reduced using redundant calculation. We also apply pipeline
execution to our system to minimize idle processor time, even
with multiple GPUs on a shared bus. Using a single GPU, this
system can analyze 1 GB of signal data (128 MHz bandwidth
at 1 Hz resolution in single precision floating-point complex
format) in 0.44 seconds. With the multi-GPU setup, using four
GPUs enables 4 GB of signal data to be processed in 0.82
seconds. This is equivalent to a processing speed of around
60 GFLOPS. In particular, we focus on using this system in
the Search for Extraterrestrial Radio Emissions from Nearby
Developed Intelligent Populations (SERENDIP) project. By using
multiple GPUs we can get enough practical performance for high
bandwidth radio astronomy projects such as SERENDIP.

I. INTRODUCTION

In recent years the field of radio astronomy has benefited

from faster signal processing technologies. Projects use custom

and/or off-the-shelf hardware configurations to perform vari-

ous analyses of radio signal data. The aim of these projects

ranges from detection of extraterrestrial intelligence [1] [2] to

mapping of the interstellar medium [3]. Many of these projects

require fast sophisticated analysis of large amounts of data.

In large bandwidth radio astronomy, it may not be feasible to

record all the signal spectrum for later analysis due to the sheer

volume of data. For example, the SERENDIP V project has the

ultimate target of continuously analyzing a 2.1 GHz spectrum

at a resolution of 1.5 Hz per channel. If each channel requires

16 bits (8-real and 8-imaginary), this will produce over 220

TB of data per day. Therefore real-time signal analysis systems

are required.

In this paper, we describe the single and multi-GPU imple-

mentation of a large bandwidth signal processing system for

radio astronomy observation. In particular, the development of

this spectrometer is aimed toward use in SERENDIP or similar

data intensive projects.

As an initial goal, the SERENDIP V project aims to analyze

a 128 MHz bandwidth spectrum at less than 1 Hz resolutions

in real-time. This is equivalent to a data bandwidth of 1

GB per second for a single-precision floating-point complex

data format. If the resolution and/or bandwidth increases, the

discrete spectra will also increase as well as the amount of

data.
To handle these large bandwidth spectra, custom designed

hardware is often used for radio astronomy observation. In

recent years, these setups often consist of Field Programmable

Gate Arrays (FPGA). For example, the SERENDIP V project

[4] [5] uses an FPGA based system called the SETI Spec-

trometer [5], composed of two main components: Interconnect

Break-out Board (IBOB) [6] and Berkeley Emulation Engine

2 (BEE2) [7]. The BEE2 system is composed of five FPGAs

and is able to process a 128M points spectra in one second.
The current FPGA based system has enough performance

for current astronomy observation, but this system has two

disadvantages. First, when applied to large bandwidth appli-

cations such as this, FPGAs are often expensive compared to

GPUs. The SETI Spectrometer costs approximately $20,000

while the NVIDIA Tesla S1070 used in this paper costs less

than half while achieving higher performance. The second, be-

cause large computations must be split over multiple FPGAs,

increasing the input bandwidth of such a system may require

significant redesign work.
Based on these points, we attempted to build a large

bandwidth radio signal processing system which improves on

the performance of the FPGA based system. CPU based im-

plementation that has the same function of SETI Spectrometer

requires 5.94 seconds (result of preliminary experiment using

FFTW [8] on Intel Xeon CPU X5450 3.00 GHz). Therefore

we require GPUs to accelerate the wide bandwidth radio signal

analysis.
In recent years GPUs are becoming widely used as scientific

application accelerators. Most GPUs have high calculation

speed with some achieving nearly one TFLOPS of theoret-

ical maximum speed. There are three significant benefits to

building a spectrometer system with GPUs:

1) GPU has relatively low cost because it is mass-produced

hardware.

2) Availability of the CUDA [9] programming environment

and associated libraries facilitates programming on GPU

3) New signal processing functionality can be easily added

International Symposium on Parallel and Distributed Processing with Applications

978-0-7695-4190-7/10 $26.00 © 2010 IEEE

DOI 10.1109/ISPA.2010.53

594

using the CUDA environment

We implemented the GPU spectrometer initially using one

GPU, then later four GPUs working together. Using one GPU,

the size of VRAM limits the maximum length of spectra that

one GPU can process in real-time. To process longer length

spectra, we must use multi-GPU and distribute input data to

GPUs.

The GPU spectrometer requires a CUDA implementation

of very large 1-D FFT (over 128M points) for frequency

analysis. In the case of the FPGA based SETI Spectrometer,

only a 32k-point 1-D FFT is required despite the 128M point

input spectra. This is because it divides the input spectrum by

frequency domain and performs many small FFTs. To divide

the spectra by frequency domain, the SETI Spectrometer uses a

steep cut-off bandpass filter. This bandpass filter cannot divide

the frequency band precisely, and causes some noise in the

signal. As a division method, the signal also can be divided

in the time domain, but this time decomposition decreases the

frequency resolution of FFT results. Therefore performing a

very large FFT without any division is the optimal solution

which we aimed for with the GPU spectrometer. A very

large FFT was accomplished by implementing a four-step FFT

algorithm on GPU. For multiple GPUs, this four-step FFT

algorithm is also applied, but it is distributed over the GPUs.

There are two main problems in the implementation of this

GPU spectrometer, both caused by data transfer. The first

problem involves memory copy from the host machine to

the GPU. To process the signals, we have to transfer radio

signal data from the controlling CPU to the co-processing

GPU. Transferring large amounts of data can negatively affect

performance by idling the GPU processing units.

The second problem arises from using multiple GPUs

connected to the host machine with a shared PCI-Express bus.

In this case we have to consider the timing of data transfers

to prevent bus conflicts.

To overcome these problems, we use two techniques. First,

to reduce the total amount of transferred data from CPU to

GPUs, we decompose the input data over GPUs and places an

overlap region (referred to as ghost zone [10]) on each GPUs.

This technique causes the redundant calculation on GPUs.

Second, data bus conflicts are avoided by applying pipeline

execution to GPU spectrometer. By applying these techniques

to our implementation, we get practical performance for the

SERENDIP project.

The paper is organized as follows. In Section II we describe

related work and how our system is new and different. In

Section III we provide a brief overview of the CUDA library,

and in Section IV some background on the required spec-

trometer functionality and limitations. The implementation on

a single GPU and related issues are described in Section V,

while the implementation on multiple GPUs is described in

Section VI. We offer experimental results for both the single

and multi-GPU implementation in Section VII and finish with

conclusions and directions for future work in Section VIII.

II. RELATED WORK

Many astronomy observation projects use an FPGA based

system. For example, the SERENDIP V project uses a Xilinx

Virtex-II FPGA based system called the SETI Spectrometer.

This is a 128M channel, 200 MHz, 1 polarization spectrometer.

The feature of this system is splitting the 200 MHz input spec-

tra into sub-bands of 24.4 kHz each using a PFB (Polyphase

Filter Bank) [11] [12] and performing frequency analysis on

each bandwidth chunk.

In other work, GPU based systems are used to accelerate as-

tronomy observation. Harris et al [13] use CUDA to implement

a GPU FX spectrometer. This system performs correlation for

telescopes with multiple antennae and achieves speeds one to

two orders of magnitude faster than a CPU based system.

Our system requires a 1-D FFT on GPU for frequency

analysis. Currently there are a number of FFT implemen-

tations available for GPUs. Recently, FFT implementations

for the CUDA API have achieved very good performance

[14][15][16].

Govindaraju et al [14] present the implementation of many

FFT algorithms on GPU. Their implementation supports

not only power-of-two but also non-power-of-two FFT and

achieved over 300 GFLOPS calculation performance. They

presents the performance results of up to 16M-point 1-D

FFT but this length of FFT is not enough for our GPU

spectrometer (e.g. over 128M-point 1-D). The GPU vendor

NVIDIA provides an FFT library called CUFFT [16] that also

has very good performance, but does not support FFTs of very

large inputs either. The CUFFT supports up to only 8M-point

1-D FFT.

Nukada et al [15] discuss a 3-D bandwidth intensive FFT

implementation on GPU. Their 3-D FFT covers large sizes up

to 5123 points in single-precision floating-point format. They

use an out-of-core method to do very large 3-D FFT.

To the best of our knowledge, there are no very large FFT

implementations supporting multiple GPUs. However, there

is an FFT implementation for clusters (Takahashi et al [17])

that handles FFTs up to 2 billion points. This implementation

requires all-to-all communication between the cluster nodes.

However, all-to-all communication is not appropriate for multi-

GPU systems because current generation GPUs cannot directly

communicate with each other.

III. COMPUTE UNIFIED DEVICE ARCHITECTURE(CUDA)

Compute Unified Device Architecture (CUDA) is NVIDIA’s

parallel computing architecture for GPU. We can imagine that

a GPU is a SIMD parallel machine that executes hundreds

to thousands threads. The CUDA program (called kernel) is

launched from CPU.

The computing unit in a GPU has a hierarchical structure.

The GPU is organized with several multiprocessors (MPs),

where each MP has several stream processors (SPs) for

processing threads. There is an on-chip memory on each MP

(called shared memory) that SPs can use to share processing

data. Depending on this structure, threads are divided into

groups (called thread blocks), where each thread block is

595

arbitrarily assigned to an MP. In regards to this point, we

must program a kernel that has no data dependency between

different thread blocks.

To get high performance in the kernel, it is necessary

to program it being aware of the memory access pattern.

Global memory is an off-chip memory in the GPU which

takes relatively long to access. To reduce memory access

latencies, memory access by threads is coalesced into memory

transactions if they satisfy some conditions. To satisfy these

conditions, we have to be conscious of the memory access

pattern. In other instances, the shared memory has a bank

structure. If several threads access the same bank, the memory

access instructions are serialized (called bank conflict).
Other specifications about CUDA are written in the pro-

gramming manual [9] in detail.

IV. GPU-SPECTROMETER OVERVIEW

The GPU Spectrometer accelerates frequency analysis of

an input radio spectrum. The SERENDIP project uses spec-

trometers to search radio bands that could contain non-natural

signals from extraterrestrial intelligence (ETI). This project

assumes that the ETI sends their message on a narrow band-

width of unknown frequency. Based on this assumption, the

spectrometer must detect narrow band signals of relatively

higher strength than the background noise.

This section provides an overview of our GPU spectrometer

and describes the input data, calculations performed and

resulting output.

A. Spectrometer Input and Output

Here we describe the characteristics of input and output data

for the spectrometer.

The frequency band of interest is first read by a radio

telescope and sent to an Analog Digital Converter (ADC).

The ADC converts the observed band into digital format then

a Decimating quadrature DownConverter (DDC) converts the

band into a baseband. We assume that the GPU spectrometer

can use the FPGA based ADC and DDC that SETI Spectrom-

eter uses. Depending on the application, this may pass through

additional filters before eventually being written to the main

memory of the host machine.

The input data is digitized radio data that the GPU spec-

trometer can read from the main memory of host machine.

One sample of the digitized radio data is described with a 16-

bit complex data sample comprised of two characters (8-bit

real and 8-bit imaginary). For example, the size of input data

is 256 MB for a 128 MHz spectrum at 1 Hz resolution.

The output data consists of detected signals from the input

spectra that have relatively strong energy. The GPU spectrom-

eter outputs these spectra into a file in binary format. The

output information is detected signal strength, frequency band

that the signal is in (index of input data) and mean power of

the local spectrum. Usually the number of signals output by

the spectrometer is roughly 5 orders of magnitude smaller than

the input data.

ADC & DDC

Buffer incoming
data

Host

FFT etc…
GPU

7) Output to file
Host

1) Memory copy to GPU
(Input)

6) Memory copy to CPU

2) Convert Data Format
GPU

3) FFT

4) Calculate power spectrum

5) Detect strong power spectrum

Memory

Fig. 1. Processing flow of GPU-Spectrometer

B. Processing flow

The GPU spectrometer operation involves seven stages

which are repeated continuously while the spectrometer is

operating. In the case of stages performed on GPU, each

stage share processing data on global memory on GPU.

For example, the FFT stage reads input data from global

memory and writes result back to global memory. The GPU

spectrometer operates some stages simultaneously to reduce

the number of global memory access. The processing flow is

illustrated in Figure 1.

1) Host to GPU memory copy: Transfer input data from

host memory to GPU over the PCI-Express bus.

2) Convert data format: Convert the input complex data

from character (1 byte) format to float (4 bytes) format on

GPU. This is because of insufficient precision if the GPU does

calculations with a character format.

3) FFT: Perform FFT on GPU. This FFT is the most

computationally intensive stage.

4) Calculate power spectrum: Calculate power spectrum

from the results of FFT. If element n in the FFT result is

described as xn + iyn, the corresponding power spectrum

element is x2
n + y2

n.

5) Detect strong power spectrum: Our system detects rela-

tively strong elements of the power spectrum. Strong elements

in the power spectrum are defined as those whose power

exceeds the mean power of the local spectrum times a user-

specified threshold value. For example, if the threshold is

10 and the mean spectrum power is 20, then signals over

power 200 will be reported. This stage is composed of these

calculations:

i) Elements of the power spectrum are divided into blocks

of user-specified size (called boxcars)

ii) The average strength of the power spectrum for each

boxcar is calculated

iii) Spectrum elements with power over the boxcar average

times threshold are located

6) GPU to CPU memory copy: Transfer detected power

spectrum from GPU to CPU.

7) Output detected power spectrum: Output transferred

data into a file on the host machine.

596

STEP4:
Matrix

transpose

STEP3:FFT along rows

STEP1:FFT along columns

STEP2:
Multiply

twiddle factor N2

N1

Fig. 2. Four-step FFT algorithm

C. Detailed specification

Here we describe the detailed specification. We assume

that the input signal is a power of two because the FFT

performance is declined. We also assume that the GPUs that

compose this system are homogeneous and the number of GPU

is a power-of-two. The reason of this assumption is to uniform

the load of each GPU if the same length input is given to each

GPU. It should be possible to create a system without these

assumptions, however the performance will likely be lower

than described in this paper.

V. SINGLE-GPU SPECTROMETER IMPLEMENTATION

This section describes the implementation using single

GPU. Because the spectrometer operates in real-time, it must

analyze a given set of data within a certain time limit. Due to

memory limitations, this is one second worth of signal data

that must be processed within one second of wall time.

As an initial goal, the GPU spectrometer is processing a

128M points spectra in one second. We intend to replace the

SETI Spectrometer with our GPU spectrometer, so that we

decide the goal as same as the SETI Spectrometer.

The most challenging part of the spectrometer is the FFT

implementation because it is very computationally intensive.

To accelerate the performance of large FFT, we design an FFT

implementation with the intention of preventing inappropriate

memory accesses on the GPU.

In addition, we discuss the maximum length FFT a single-

GPU spectrometer can handle under the execution time and

GPU hardware limitations.

A. FFT implementation

In this implementation we use the four-step FFT algorithm
[18]. Assume that the FFT data is stored in the array A
of length N which can be expressed as the product of two

positive integers N1 and N2, or N = N1N2.

True to its name, the four-step FFT algorithm consists of the

following four steps (Figure 2). Fundamentally, this algorithm

performs a large FFT by dividing it into two small FFTs.

STEP1) Perform N2 simultaneous N1-point 1-D FFTs on

the input data A treated as a N1 × N2 (row-major)

complex matrix.

STEP2) Multiply the elements Ajk in the resulting array con-

sidered as a N1 ×N2 matrix, by e±2πijk/n (twiddle

factor). The ± sign is the sign of the transform.

STEP3) Perform N1 simultaneous N2-point 1-D FFTs on the

N1 × N2 complex matrix.

STEP4) Transpose the N1 ×N2 complex matrix into a N2 ×
N1 matrix.

Note that the FFT along the matrix columns (STEP1) has a

problem. Such FFT requires non-successive memory address

access, which is inappropriate for GPU and causes a per-

formance degradation. In terms of efficient GPU throughput,

access of successive memory addresses is desirable. Most FFT

implementations on GPU, such as CUFFT, assume that the

FFT is performed with successive address access.

If we intend to apply CUFFT to STEP1, we have to

transpose the matrix before STEP1. In that case, we have to

transpose the matrix again before STEP3. These additional

matrix transposes requires relatively long time, which spoils

the advantage of the use of CUFTT.

To solve this problem, we implement a register-intensive

FFT kernel and apply it to STEP1 without additional matrix

transposes. Up to 16-point FFT, the kernel manages the

sufficient number of active threads on multiprocessors because

it requires only around fifty registers per thread. The kernel

accesses to the global memory just for twice for each element

of the matrix, and threads is moreover coalesced at the

accesses. Therefore the kernel has relatively good performance

even for non-successive addressed data. A disadvantage of this

kernel is the limitation of N1 depended on the number of

registers. We decide N1 as 16 in our implementation.

On the other hand, we apply CUFFT 2.3 library to STEP3

because this library has enough performance for real-time

analysis. The limitation of CUFFT determines N2. CUFFT

can perform up to 8M-point FFT, so that the maximum size

we can calculate on single GPU is 16 × 8M = 128M point.

For STEP4, we implement a matrix transpose kernel based

on the transpose kernel included in CUDA SDK 2.3[19]. This

CUDA kernel has good performance because of the fully

coalesced access and bank conflict avoidance. We extend the

kernel to perform the matrix transpose while simultaneously

calculating power spectra. Our kernel reduces the number of

memory accesses compared to performing power spectrum

calculation after the matrix transpose.

B. Maximum signal length

The memory size of VRAM determines the maximum signal

length that a single GPU can handle in real-time.

For our single-GPU spectrometer, all input data must be

stored in the GPU VRAM. From the perspective of the

implementation, our system could perform very large (over a

few giga points) FFT. In the four-step FFT algorithm, STEP1

and STEP3 perform many independent FFTs. This means we

can divide input data into parts and repeat as follows: send

a part of data to GPU, perform small FFTs and send results

back to CPU. Such an out-of-core method increases the total

597

amount of data transferred between GPU and CPU, requiring

very long total time.

To complete the processing in real-time, all data should

be transferred to GPU at one time and the FFT should be

performed without any data transfer during its calculation. This

means to ensure real-time execution of the GPU spectrometer,

the maximum FFT length that a single-GPU spectrometer can

handle is limited by the GPU VRAM capacity. The current

GPU, such as Tesla, has up to 4 GB VRAM, so that it can

perform the 128M-point FFT well within memory limitations.

We discuss the limitation by the VRAM capacity later in

Section VII-B.

C. Convert data format

The FFT is a time consuming part but the others are not

because the calculations are relatively easy to parallelize.

The conversion of input spectra from character to float are

easy to parallelize. This is because neither data dependency nor

control dependency exist among the elements. Each complex

input spectrum element can be converted independently. We

can divide data into parts such that one thread block processes

one part and each thread in a thread block processes one

element of the part.

D. Detect strong power spectrum

The detection of strong power spectrum is somewhat com-

plicated to parallelize.

This is because we have to calculate the average value of the

power spectrum within a boxcar. We cannot arbitrarily divide

input data into parts, but we can divide data into boxcars. One

thread block manages each boxcar and calculates the average

value of the power spectra within it.

Be carefully managing threads and memory access, the GPU

spectrometer is able to perform these calculations at high

efficiency.

VI. MULTI-GPU SPECTROMETER IMPLEMENTATION

The goal of Multi-GPU spectrometer is processing more

large spectra in one second, without any spectrum division.

As mentioned in Section I, high resolution analysis requires

a very large FFT. As the size of spectrum increases, the

VRAM capacity of one GPU becomes insufficient. To perform

the analysis in real-time, we must distribute input data and

calculations over multiple GPUs. This implementation can

support large spectra, up to 512M point.

The most challenging part is a distributed FFT implemen-

tation because it requires a large data transfer between the

CPU and GPUs. The large data transfer causes performance

degradation.

Our implementation uses four techniques to improve per-

formance.

1) reduce the total amount of transferred data by applying

ghost zone.

2) overlap redundant calculation and data transfer to pre-

vent the redundant calculation from increasing total

execution time.

Host Host

GPU0

GPU1 GPU1

GPU0

2) convert to float
3) N1 -point FFT
4) twiddle Factor

5) data transfer to CPU
(format : float)

8 * N / 4 Byte
1) data transfer to GPU

(format : character)
2 * N / 2 Byte

7) -point FFT

6) data transfer to GPU
8 * N / 4 Byte

Case : P=2

N1

N1

N2

N2/2

N2/2

N1/2

N2

Fig. 3. Data flow and transferred data size on naive FFT implementation for
P=2

3) apply pipeline execution in our GPU spectrometer to

minimize idle processor time.

4) omit the matrix transpose required in the four-step FFT

algorithm to reduce the transferred data size.

A. Naive FFT implementation

Before explaining our implementation, we describe the

naive distributed four-step FFT implementation for compar-

ison.

The naive implementation is the realization of a four-step

FFT distributed on multiple GPUs. Assume there are P GPUs

and N = N1N2 point input spectra (considered as a N1 ×
N2 complex matrix). The multi-GPU spectrometer would then

operate as follows:

1) N1×N2/P point spectra is sent from CPU to each GPU.

Transferred data size for each GPU is 2 × N/P bytes,

resulting in a total of 2 × N bytes.

2) convert input data from character format to float format

3) perform N2/P simultaneous N1-point FFTs (STEP1)

4) apply twiddle factor to result of STEP1 (STEP2)

5) transfer (N1 × (P − 1)/P) × (N2/P) point result of

STEP2 from GPU to CPU. The transferred data size is

8×N × (P − 1)/P 2 bytes for each GPU and 8×N ×
(P − 1)/P bytes total.

6) transfer (N1/P)× (N2 × (P − 1)/P) point result from

CPU to GPU. The transferred data size is 8×N × (P −
1)/P 2 bytes for each GPU and 8×N×(P −1)/P bytes

total.

7) perform N1/P simultaneous N2-point FFTs (STEP3)

For P=2, we illustrate the data flow and data size of naive FFT

implementation in Figure 3. Before STEP4, the total amount

of data transferred between CPU and GPU is (2 × N + 16 ×
N × (P − 1)/P) bytes.

The advantage of this implementation is the scalability with

the number of GPUs. When the number of GPUs increases,

the total amount of transferred data stays constant (at most

18 × N bytes) because the amount of calculation on each

GPU decreases. On the other hand, when the bandwidth

between GPU and CPU is small, this 18 × N byte data

transfer will be a bottleneck of the GPU spectrometer. For

598

Case : P=2

Host

GPU0

GPU1

N / 2

2

+

+

2-point Fourier transform

data transfer to GPU
(format : character)

2 * N / 2 Byte

twiddle factor &
N/2-point FFT

GPU0

GPU1

Fig. 4. Data flow and transferred data size on our FFT implementation for
P=2

example, the data transfer size is 9 GB when the input data

length is 512M point (N=512). A 9 GB data transfer requires

over one second execution time assuming the experimental

setup has 8 GB/s bandwidth between GPU and CPU, making

this implementation infeasible for real-time large scale signal

analysis.

B. Ghost zone

The naive implementation requires very large data transfer

between GPUs. To eliminate the data transfer between GPUs,

we apply the ghost zone technique to GPU spectrometer. This

ghost zone uses all input data rather than just a part. In other

words, each GPU receives all input data then performs a

Fourier transform, which includes redundant calculation. To

reduce the redundant calculation, we set the matrix form of

four-step FFT algorithm as rectangular where the matrix row

is very short. We have to perform FFT along columns of

this matrix as STEP1. Each GPU cannot store all input data

in VRAM at the same time due to memory limitations. We

transfer only one row of matrix to GPU, then each GPU

performs a Fourier transform (not fast Fourier transform) on

the received data. This Fourier transform is repeated from the

first row to the last row sequentially.

We assume that there are P GPUs and an N point input

spectrum. We consider this N point spectrum as rectangular

P × N/P matrix of complex values, with matrix elements

indicated as xn(m)(0 ≤ n ≤ N/P − 1, 0 ≤ m ≤ P − 1).
Based on the four-step FFT algorithm, first we perform N/P
simultaneous P -point (xn(0), xn(1), · · · , xn(P − 1)) FFTs.

The result of N/P simultaneous P -point FFTs is represented

as a matrix of complex values and each element is indicated

with Fn(m).
GPUk (0 ≤ k ≤ P − 1) performs a Fourier transform

of (F0(k), F1(k), . . . , FN/P (k)). In other words, one GPU

performs a Fourier transform to calculate one row of P×N/P
matrix. To calculate Fn(k) on each GPUk, we transfer each

row of the matrix to all GPUs sequentially until all data is

transferred. When a GPU receives one row of the matrix,

it computes the sum of the received data and previous data

in such a way that it ends up performing a P -point Fourier

transform.

Here we describe the FFT implementation algorithm in

pseudo-code on GPU:

T A Twiddle N/P-point FFT Output etc..

T = Transfer
A = 2-point Add

N/P simultaneous P-point Fourier transform

(A)

(B)

T A T A T A

Twiddle N/P-point FFT Output etc..
T A

T A

T A

T A

N/P simultaneous P-point Fourier transform

Fig. 5. Execution history

Fn(k) = 0 (0 ≤ n ≤ N/P − 1)
for m = 0 to P − 1 do

Memcpy to GPU(xn(m)) (0 ≤ n ≤ N/P − 1)
Fn(k)+ = xn(m)e−2πimk/P (0 ≤ n ≤ N/P − 1)

end for
Multiply twiddle factor(Fn(k))
Perform N/P -point FFT(Fn(k))

Each GPU can perform the twiddle factor multiplication and

N/P -point FFT independently. Our implementation data flow

is illustrated in Figure 4. There is no data transfer between

GPUs in our FFT implementation. The maximum data length

for the multi-GPU spectrometer is P× 128M point, or in other

words N/P = 128M. We can perform the 128M-point FFT

based on the single-GPU spectrometer.

This implementation requires 2 × P × N bytes of data

transfer because each GPU requires all the spectrum. When

the number of GPU is 2 or 4, the total amount of transferred

data size is smaller than that of the naive implementation. This

is because the transferred data between GPU and CPU is only

character format data.

While the amount of transferred data is smaller than that of

the naive implementation, the amount of calculation is larger

than that of the naive implementation. For example, in the case

of P = 4, Fn(0) and Fn(2) are calculated by these equations:

Fn(0) = {xn(0) + xn(2)} + {xn(1) + xn(3)}
Fn(2) = {xn(0) + xn(2)} − {xn(1) + xn(3)}

Fn(0) is calculated on GPU0 and Fn(2) is calculated on

GPU2. GPU0 and GPU2 partially perform the same calcu-

lation which is redundant calculation.

A problem of our FFT implementation is low scalability.

The total amount of transferred data, 2 × P × N bytes, is

proportional to the number of GPUs P . To the best of our

knowledge, the maximum number of GPUs in modern multi-

GPU environments is 8. The naive implementation requires

a maximum of 18 × N bytes of data transfer while our

implementation requires 2×P ×N bytes. Therefore, our im-

plementation is more effective than the naive implementation

on current multi-GPU environments.

C. Overlap calculation and transfer

These redundant calculations are irrelevant to the total ex-

ecution time because they can be overlapped by data transfer.

This is because the data transfer time is relatively longer

than calculation. For example, in the case of P = 4, we get

599

STAGE1 STAGE2

STAGE1

STAGE1 STAGE1
STAGE

3

STAGE2

STAGE1

STAGE2

STAGE1

GPU0

GPU1

STAGE
3

STAGE2 STAGE2 STAGE2

Fig. 6. Pipeline execution on 2GPUs

an execution history like Figure 5-(A) without overlapping.

Figure 5-(A) shows that our system performs: first the repeat

data transfer and 2-point add (Fn(k)+ = xn(m)e−2πimk/P),
next the twiddle factor multiplication, and finally the N/P -

point FFT. However, when we overlap the data transfer and

2-point add like in Figure 5-(B), the redundant calculations

are hidden by data transfer. We cannot overlap the last 2-point

addition calculation.

D. Pipeline execution

We focus on the PCI-Express bus architecture of GPUs

to minimize the idle processor time by applying pipeline

execution to the multi-GPU spectrometer.

1) PCI-Express bus architecture: GPUs are connected to

their host machines on a PCI-Express (PCIe) bus. In some

cases, several GPUs share one PCIe bus. For example, in the

NVIDIA Tesla S1070, there are 4GPUs and 2 PCIe buses

(2GPUs share one PCIe bus). Two GPUs that share one bus

transfer their data at same time, degrading the bandwidth that

one GPU can use.

We coordinate the timing of transfer to avoid bandwidth

degradation. For the sake of simplicity, in this discussion we

assume the case of 2 GPUs.

2) 2GPUs without shared PCIe bus: In this case there are

2 GPUs without a shared PCIe bus, in other words, each GPU

has own PCIe bus. It is unnecessary to coordinate data transfer

timing because no transfer collision occurs.

3) 2GPUs with shared PCIe bus: In this case, 2 GPUs share

one PCIe bus so we must coordinate the timing of transfer to

prevent conflicts.

To coordinate the transfer timing we use pipeline execution.

We divide the overall operation into 3 stages:

STAGE1) data transfer includes N/P simultaneous P-point

Fourier transforms

STAGE2) twiddle factor multiplication and N/P -point FFT

STAGE3) calculate power spectrum, threshold and output

to file

Figure 6 shows a pseudo execution history of 2GPUs with

shared PCIe bus. While one GPU processes STAGE1, another

will process STAGE2. Both GPUs processes STAGE3 at

the same time. This pipeline execution ensures that high

bandwidth is available to each GPU.

4) Implementation on Tesla S1070: NVIDIA Tesla S1070

has two couples of GPUs and each GPU couple shares one

PCIe. This environment represents both with shared PCIe bus
and without shared PCIe bus. Therefore, we apply a hybrid

method shown as Figure 7. In this figure, GPU0 and GPU2

share one PCIe, while GPU1 and GPU3 share the other PCIe.

STAGE1 STAGE2

STAGE2

STAGE2

STAGE1 STAGE1

STAGE
3

STAGE2

STAGE2

STAGE2

STAGE2

STAGE2

GPU0

GPU1 STAGE1

STAGE1

STAGE1

STAGE
3

STAGE2

STAGE1 STAGE1

STAGE1

STAGE2STAGE1

STAGE1

STAGE1

GPU2

GPU3

STAGE2

STAGE2

Fig. 7. Pipeline execution on the Tesla S1070

GPU0

GPU1

GPU2

GPU3

GPU0

GPU1

GPU2

GPU3

transposeB
oxcar

Boxcar

Fig. 8. Matrix transpose for arranging boxcars

E. Thresholding power spectrum

As shown in Figure 2, the four-step FFT implementation

transposes a matrix at STEP4. The matrix transpose locates the

FFT result in successive memory addresses. It simplifies the

following step of strong signal detection (IV-B5) by localizing

a boxcar in each GPU as shown in Figure 8-right. However,

it also results in large data transfer between CPU and GPUs

because GPUs must communicate with each other via the main

memory of the host machine.

On the other hand, our implementation avoids the matrix

transpose in order to reduce data transfer between CPU and

GPU. If the size of a boxcar is larger than the number of

GPUs, the elements of that boxcar are distributed among all

GPUs (Figure 8-left). To detect strong power spectra, GPUs

exchange the partial sum of their own boxcar fragment with

each other instead of the whole fragment, then they calculate

the mean value of the boxcar for use in thresholding. The

transferred data size for these partial sums is much smaller

than that required by the matrix transpose.

VII. RESULTS

A. Experimental Methodology

We performed experiments with our GPU spectrometer us-

ing the NVIDIA Tesla S1070 computing system. This system

includes four NVIDIA Tesla C1060 GPUs, so we can use up

to 4GPUs in multi-GPU spectrometer experiments. Each GPU

has 4 GB VRAM. Tesla S1070 is fully compliant with PCI-

Express 2.0 x16 (theoretical bandwidth 8 GB/s), but the host

machine has two buses that are compliant with PCI-Express

2.0 x8 (theoretical bandwidth 4 GB/s). The host machine

specification is shown in Table I.

The input data to our system is white noise with a periodic

pulse. Usually a radio telescope observes white noise. White

600

TABLE I
THE HOST MACHINE CONFIGURATION FOR EXPERIMENT

CPU Intel(R) Xeon(R) CPU E5450 × 4
OS Cent OS release 5.3

Memory 16 GB
Software CUDA Toolkit 2.3, GCC 4.1.2

PCI-Express PCI-Express 2.0 x8 × 2

TABLE II
THE NUMBER OF POINTS OF SIMULATED POWER SPECTRUM AND ITS DATA

SIZE

Input data length Output data size simulated power spectrum point
16M 24 kB 2047
32M 48 kB 4096
64M 96 kB 8192

128M 177 kB 15082
256M 192 kB 16383
512M 192 kB 16384

noise can be created by random number sequence that we

create by a Mersenne Twister pseudo-random generator. In this

experiment, to simulate the strong power spectrum at specific

bands, we add periodic pulse signals to the white noise. For

timings we generate various lengths of white noise with pulses

and execute the GPU spectrometer 20 times on each length

signal, then take the average time.

The number of points of simulated strong power spectrum

and its data size are illustrated in Table II, and our GPU

spectrometer outputs these simulated strong power spectrum.

Note that the GPU spectrometer must also output the observa-

tion date (time stamp), observatory location, etc, for practical

observation. However, in this experiment, our system does

not output such information, so the output data size will be

greater in actual observation. This causes the increase of total

execution time depending on the applications, but we think

these data size is small enough compared to strong power

spectrum data size.

In this section, the FLOPS of our FFT implementation is

estimated by the following formula where M simultaneous

N -point FFT.

M × 5 × N log2 N/(FFT execution time)

B. Single-GPU spectrometer Result

For the single-GPU spectrometer, we test our system with

varying lengths of input spectra from 16M to 128M points.

Figure 9 and Figure 10 show the total execution time of

the single-GPU spectrometer and the total execution time

breakdown, respectively. We also describe the total execution

time breakdown in Table III.

Figure 9 indicates that the total execution time is shorter

than one second for all cases. This demonstrates that our

system has enough performance for real-time radio signal

analysis up to 128M point spectra.

Figure 10 indicates the FFT calculation accounts for the

largest fraction of the total execution time. To process the

spectra more faster, the FFT calculation have to be accelerated.

We expect that our four-step FFT implementation has some

Fig. 9. Total execution time of single-GPU spectrometer with changing input
data length from 16M to 128M point

Fig. 10. Breakdown of execution time with changing input data length from
16M to 128M point: DtoH(transfer from Device to Host), HtoD(transfer from
Host to Device)

improvements. When the input spectra length is 128M point,

our 16-point FFT kernel perform only 55 GB/s memory

bandwidth and 69 GFLOPS. These values are smaller than

the peak bandwidth (102 GB/s) and peak theoretical floating-

point operation performance (933 GFLOPS).

We discuss here the memory limitation for the GPU spec-

trometer. The four-step FFT implementation requires N × 14
bytes memory at least, where N represents the length of input

spectrum. The breakdown is N × 2 bytes for saving input

spectra, N × 8 bytes for FFT and N × 4 bytes for matrix

transpose including power spectrum calculation. This memory

area for matrix transpose is reduced by the performing matrix

transpose while simultaneously calculating power spectrum.

This is because the memory area for matrix transpose requires

the same size of FFT but the power spectrum requires half

memory size of FFT.

Our implementation also requires the additional memory

area for thresholding power spectrum, performed CUDA pro-

gram binary and others. These additional memory size is much

smaller than that of FFT or matrix transpose. For example,

when the input spectra length is 128M-point, required memory

size is 1.75 GB at least, from 2.0 GB to 2.5 GB at most.

601

TABLE III
BREAKDOWN OF EXECUTION TIME AND ITS PERCENTAGE TO TOTAL EXECUTION TIME. THE EXECUTION TIMES ARE ROUNDED TO THE MILLISECOND.

HtoD Convert FFT Threshold DtoH Output TOTAL
second % second % second % second % second % second % second

16M 0.0109 24.4 0.0042 9.3 0.0263 58.8 0.0029 6.5 0.0001 0.3 0.0003 0.6 0.045
32M 0.0218 22.2 0.0082 8.3 0.0618 62.9 0.0057 5.8 0.0003 0.3 0.0005 0.5 0.098
64M 0.0436 20.3 0.0162 8.6 0.1421 66.2 0.0113 5.2 0.0005 0.2 0.0010 0.5 0.215
128M 0.0872 19.7 0.0324 7.3 0.2975 67.2 0.0225 5.1 0.0010 0.2 0.0019 0.4 0.442

(a) CASE 1PCIe (b) CASE 2PCIe

Fig. 12. Execution history of two-GPU spectrometer (input spectra length is 256M point)

Fig. 11. Total execution time of two-GPU spectrometer

C. Two-GPU spectrometer result

We tested our two-GPU spectrometer with varying input

spectra length from 64M to 256M points. We experiment with

both cases of 1PCIe (GPUs with shared a PCIe bus) and 2PCIe
(GPUs without shared PCIe buses).

Figure 11 represents the total execution time of the two-

GPU spectrometer in the case of 1PCIe and 2PCIe. This total

execution time is the elapsed time from the end of outputting

the power spectrum to the next end of outputting the power

spectrum in pipeline execution. Both cases have approximately

the same total execution time and both times are shorter than

one second. The differences of execution time between the

1PCIe case and 2PCIe case are caused from the experimental

error.

An execution history for 256M point is shown in Figure

12a and Figure 12b. In 1PCIe case, our system accomplished

pipeline execution. The execution time of transfer and 2-

point add is around 0.21 seconds, equal to 2PCIe case. This

indicates that there is no decline of bandwidth in the case of

Fig. 13. Total execution time of four-GPU Spectrometer

1PCIe because of no collisions between GPU0 transfer and

GPU1 transfer. Thus, our two-GPU spectrometer resolves the

problem of sharing a PCIe bus.

In the 2PCIe case, the 128M-point FFT time accounts for

around half of the total execution time. This 128M-point FFT

time is around 0.28 seconds, and this is larger than the transfer

and 2-point add time. To improve the performance of 2PCIe

case, we have to improve the performance of 128M-point FFT.

D. Four-GPU spectrometer result

We also tested our four-GPU Spectrometer with varying

input spectra length from 64M to 512M points. As mentioned

in Section VI-D4, the environment contains two couples of

GPUs and each GPU couple shares one PCIe.

Figure 13 represents the total execution time of four-GPU

Spectrometer. This total execution time is the elapsed time

from the end of outputting the power spectrum to the next

end of outputting the power spectrum. The total execution time

is shorter than one second for up to 512M point using four

GPUs.

602

TABLE IV
COMPARISON OF EXECUTION TIMES ON GPU0 (INPUT SPECTRA LENGTH IS 128M-POINT).

FFT length Transfer Data Size HtoD* Convert Twiddle FFT Threshold** Output Wait Total
per GPU(point) per GPU (byte) (s) (s) (s) (s) (s) (s) (s) (s)

1GPU 128M 256M 0.087 0.032 - 0.298 0.023 0.002 - 0.442
2GPU(2PCIe) 64M 256M 0.105 - 0.033 0.139 0.014 0.003 - 0.295

4GPU 32M 256M 0.097 - 0.018 0.060 0.011 0.003 0.020 0.210

* In the case of 2GPU and 4GPU, HtoD includes the execution time of 2-point and 4-point FFT (2-point add) execution time, respectively.
** Threshold includes the execution time of DtoH and partial sum time.

Fig. 14. Execution history of four-GPU Spectrometer for 512M point input

The execution history when the input spectra length is

512M point is shown in Figure 14. Figure 14 indicates that

the bottleneck of our system is data transfer. The GPUs

have idle time because 128M-point FFT and twiddle factor

multiplication time is shorter than the transfer time. In this

experiment environment, the bandwidth between CPU and

GPUs is narrow because of PCI-Express 2.0 x8. If the host

machine had PCI-Express 2.0 x16 buses, the FFT would be

a bottleneck. However, as the input data size increases, the

transfer becomes a bottleneck even with PCI-Express 2.0 x16

buses. This means that the bottleneck of GPU spectrometer

can change as the input spectra length becomes longer. The

bottleneck is FFT (computation) when the input spectra length

is up to 256M or 512M point, but it is data transfer when the

input spectra length is over 1G-point.

E. Total execution time comparison

We summarize the execution times of the GPU spectrometer

in Figure 15. The total execution time of the same spectra

length is reduced when the number of GPUs increase and it

has nonlinear speed-up.

This nonlinear speed-up is caused by the transferred data

size per GPU that does not change as the number of GPUs

increases. We summarize the breakdown of execution time

of the GPU spectrometer in Table IV when the input spectra

length is 128M-point. The execution time of FFT is reduced

by half as the number of GPUs doubles because the length

of FFT that one GPU perform is halved. In fact, when input

spectra are 128M point, execution time of FFT is around 0.30

Fig. 15. Comparison of total execution times. 1GPU cannot analyze 256M
and 512M-points spectra because of memory limitation. 2GPU also cannot
analyze 512M-points spectra for same reason

seconds using one GPU, and is around 0.14 seconds using

two GPUs. On the other hand, the time for data transfer is not

reduced by half because transferred data size is constant. In

fact, when input spectra is 128M point, transfer time is around

0.087 seconds using one GPU, and is around 0.105 seconds

using two GPUs.

This increment of transfer time is attributed to the calcula-

tion of last 2-point add that is not overlapped by transfer. In

the case of 2GPU, the transfer time is longer than 1GPU case

because HtoD includes the 2-point add operation. In the case

of 4GPU, the length of last 2-point add is shorter than the

case of 2GPU, then the increment of execution time of HtoD

is slightly short.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper we described the implementation of a large

bandwidth multi-GPU signal processing system for radio as-

tronomy observation. This system has to process very large

amounts of data in real-time.

To do frequency analysis on large spectra in real-time, we

implement fast large point FFT. In the case of single GPU,

we implement a four-step FFT algorithm on GPU. In the case

of multi-GPU, we also implement this algorithm on GPUs.

We apply the ghost zone technique to reduce the total amount

of transferred data between CPU and GPU. We also apply

pipeline execution to minimize idle processor time.

Using a single GPU, this system can analyze 128M point

spectra (1 GB of signal data) in 0.44 seconds. The single-GPU

spectrometer analyzes at twice the speed of the FPGA based

603

system for the same amount of data. Two and four GPUs can

analyze up to 256M point spectra (2 GB) and 512M point

spectra (4 GB), respectively. Using four GPUs allows 4 GB

of signal data to be processed in 0.82 seconds.
Future work involves improving the scalability of GPU

spectrometer. Our GPU spectrometer has the disadvantage of

increasing total amount of transferred data as the number of

GPUs increase. We also intend to apply our implementation

to other radio astronomy observation projects.

ACKNOWLEDGMENT

The authors would like to thank Paul Demorest of the

National Radio Astronomy Observatory, and Terry Filiba of

the University of California, Berkeley for their assistance. The

authors also would like to thank the members of Hagihara

laboratory in Graduate School of Information Science and

Technology, Osaka University for their insightful comments

and suggestions. This work was partly supported by JSPS

Grant-in-Aid for Scientific Research (A)(20240002), and by

the Global COE Program “in silico medicine” at Osaka

University.

REFERENCES

[1] D. Werthimer, D. Anderson, C. S. Bowyer, J. Cobb, E. Heien, E. J.
Korpela, M. L. Lampton, M. Lebofsky, G. W. Marcy, M. McGarry, and
D. Treffers, “Berkeley radio and optical SETI programs: SETI@home,
SERENDIP, and SEVENDIP,” Proc. SPIE Vol. 4273, vol. 4273, p. 104,
Aug 2001.

[2] D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. Werthimer,
“SETI@home: an experiment in public-resource computing,” Commun.
ACM, vol. 45, no. 11, pp. 56–61, 2002.

[3] W. B. Burton and D. Hartmann, “The Leiden/Dwingeloo survey of
emission from galactic HI,” Astrophysics and Space Science (ISSN 0004-
640X), vol. 217, p. 189, Jul 1994.

[4] D. Werthimer, D. Ng, S. Bowyer, and C. Donnelly, “The Berkeley
SETI Program: SERENDIP III and IV Instrumentation,” Progress in
the Search for Extraterrestrial Life, vol. 74, p. 293, 1995.

[5] CASPER project , “SETI Spectrometer,” [online] Avail-
able:http://casper.berkeley.edu/wiki/SETI Spectrometer.

[6] CASPER project, “IBOB,” [online] Avail-
able:http://casper.berkeley.edu/wiki/IBOB.

[7] C. Chang, J. Wawrzynek, and R. Brodersen, “BEE2: a high-end re-
configurable computing system,” Design & Test of Computers, IEEE,
vol. 22, no. 2, pp. 114 – 125, 2005.

[8] M. Frigo and S.G. Johnson, “The design and implementation of
FFTW3,” in proceedings of the IEEE, 2005, pp. 216–231.

[9] NVIDIA Corporation, “NVIDIA CUDA Programming Guide,” 2009 -
July.

[10] J. Meng and K. Skadron, “Performance modeling and automatic ghost
zone optimization for iterative stencil loops on GPUs,” in ICS ’09:
Proceedings of the 23rd international conference on Supercomputing.
New York, NY, USA: ACM, 2009, pp. 256–265.

[11] A. Parsons and D. Werthimer, “PFB 32, A 32-pnt
Bibplex Pipelined Polyphase Filter Bank,” [online]
Available:http://seti.ssl.berkeley.edu/˜aparsons/papers/2003-
06 pfb 32.html.

[12] A. Parsons, D. Backer, C. Chang, D. Chapman, H. Chen, P. Crescini,
C. de Jesus, C. Dick, P. Droz, D. MacMahon, K. Meder, J. Mock,
V. Nagpal, B. Nikolic, A. Parsa, B. Richards, A. Siemion, J. Wawrzynek,
D. Werthimer, and M. Wright, “PetaOp/Second FPGA Signal Processing
for SETI and Radio Astronomy,” Signals, Systems and Computers, 2006.
ACSSC ’06. Fortieth Asilomar Conference on, pp. 2031 – 2035, 2006.

[13] C. Harris., K. Haines., and L. S. Simith, “GPU accelerated radio
astronomy signal convolution,” in Experimental Astronomy, vol. 22, no.
1–2. Springer Netherlands, 2008, pp. 129–141.

[14] N. K. Govindaraju, B. Lloyd, Y. Dotsenko, B. Smith, and J. Manferdelli,
“High performance discrete Fourier transforms on graphics processors,”
in SC ’08: Proceedings of the 2008 ACM/IEEE conference on Super-
computing. Piscataway, NJ, USA: IEEE Press, 2008, pp. 1–12.

[15] A. Nukada, Y. Ogata, T. Endo, and S. Matsuoka, “Bandwidth intensive
3-D FFT kernel for GPUs using CUDA,” in SC ’08: Proceedings of
the 2008 ACM/IEEE conference on Supercomputing. Piscataway, NJ,
USA: IEEE Press, 2008, pp. 1–11.

[16] NVIDIA Corporation, “NVIDIA CUDA CUFFT Library Version 2.3,”
2009 - July.

[17] D. Takahashi, “A parallel 1-D FFT algorithm for the Hitachi SR8000,”
in Parallel Comput., vol. 29, no. 6. Amsterdam, The Netherlands, The
Netherlands: Elsevier Science Publishers B. V., 2003, pp. 679–690.

[18] D. H. Bailey, “FFTs in external of hierarchical memory,” in Super-
computing ’89: Proceedings of the 1989 ACM/IEEE conference on
Supercomputing. New York, NY, USA: ACM, 1989, pp. 234–242.

[19] NVIDIA Corporation, “CUDA Toolkit and SDK Version 2.3,” 2009 -
July.

604

