
Accelerating Cone Beam Reconstruction Using the
CUDA-enabled GPU?

Yusuke Okitsu, Fumihiko Ino, and Kenichi Hagihara

Graduate School of Information Science and Technology, Osaka University
1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
{y-okitu,ino}@ist.osaka-u.ac.jp

Abstract. Compute unified device architecture (CUDA) is a software develop-
ment platform that enables us to write and run general-purpose applications on
the graphics processing unit (GPU). This paper presents a fast method for cone
beam reconstruction using the CUDA-enabled GPU. The proposed method is ac-
celerated by two techniques: (1) off-chip memory access reduction; and (2) mem-
ory latency hiding. We describe how these techniques can be incorporated into
CUDA code. Experimental results show that the proposed method runs at 82%
of the peak memory bandwidth, taking 5.6 seconds to reconstruct a 5123-voxel
volume from 360 5122-pixel projections. This performance is 18% faster than
the prior method. Some detailed analyses are also presented to understand how
effectively the acceleration techniques increase the reconstruction performance
of a naive method.

1 Introduction

Cone beam (CB) reconstruction is an imaging process for producing a three-dimensional
(3-D) volume from a sequence of 2-D projections obtained by a CB computed tomogra-
phy (CT) scan. This reconstruction technique is integrated into many mobile C-arm CT
systems in order to assist the operator during image-guided surgery. In general, a CB
reconstruction task should be completed within ten seconds because the operator has to
stop the surgical procedure until obtaining the intraoperative volume. However, it takes
3.21 minutes to obtain a 5123-voxel volume on a single 3.06 GHz Xeon processor [1].
Accordingly, many projects are trying to accelerate CB reconstruction using various
accelerators, such as the graphics processing unit (GPU) [2–6], Cell [1], and FPGA [7].

To the best of our knowledge, Xu et al. [2] show the fastest method using the GPU,
namely a commodity chip designed for acceleration of graphics tasks. Their method is
implemented using the OpenGL library in order to take an advantage of graphics tech-
niques such as early fragment kill (EFK). It takes 8.3 seconds to reconstruct a 5123-
voxel volume from 360 projections. In contrast to this graphics-based implementation
strategy, a non-graphics implementation strategy is proposed by Scherl et al. [3]. They
use compute unified device architecture (CUDA) [8] to implement CB reconstruction
? This work was partly supported by JSPS Grant-in-Aid for Scientific Research

(A)(2)(20240002), Young Researchers (B)(19700061), and the Global COE Program “in silico
medicine” at Osaka University.

2 Yusuke Okitsu et al.

on the GPU. The reconstruction of a 5123-voxel volume from 414 projections takes
12.02 seconds, which is slightly longer than the graphics-based result [2]. However, it
is still not clear whether the CUDA-based strategy will outperform the graphics-based
strategy, because their implementation is not presented in detail. In particular, opti-
mization techniques for CUDA programs are of great interest to the high-performance
computing community.

In this paper, we propose a CUDA-based method capable of accelerating CB recon-
struction on the CUDA-enabled GPU. Our method is based on the Feldkamp, Davis,
and Kress (FDK) reconstruction algorithm [9], which is used in many prior projects
[1–5, 7, 10]. We optimize the method using two acceleration techniques: (1) one is for
reducing the number and amount of off-chip memory accesses; and (2) another for hid-
ing the memory latency with independent computation. We also show how effectively
these techniques contribute to higher performance, making it clear that the memory
bandwidth and the instruction issue rate limit the performance of the proposed method.

2 Related Work

Xu et al. [2] propose an OpenGL-based method accelerated using the graphics pipeline
in the GPU. They realize a load balancing scheme by moving instructions from frag-
ment processors to vertex processors, each composing the pipeline. This code motion
technique also contributes to reduce the computational complexity [11]. Furthermore,
their method uses the EFK technique to restrict computation to voxels within the region
of interest (ROI). Although this fragment culling technique leads to acceleration, we
cannot obtain the correct data outside the ROI. In contrast, our goal is to achieve higher
reconstruction performance for the entire volume.

Scherl et al. [3] show a CUDA-based method with a comparison to a Cell-based
method. They claim that their method reduces the number of instructions and the usage
of registers. In contrast, our acceleration techniques focus on reducing the number and
amount of off-chip memory accesses and hiding the memory latency with computa-
tion. Such memory optimization is important to improve the performance of the FDK
algorithm, which can be classified into a memory-intensive problem.

Another acceleration strategy is to perform optimization at the algorithm level. For
example, the rebinning strategy [12] rearranges and interpolates CB projections to con-
vert them into parallel beam projections. This geometry conversion simplifies the back-
projection operation needed for the FDK reconstruction. One drawback of the rebinning
strategy is that it creates artifacts in the final volume. Using this rebinning strategy, Li
et al. [10] develop a fast backprojection method for CB reconstruction. Their method
is implemented using CUDA and takes 3.6 seconds to perform backprojection of 360
5123-pixel projections. In contrast, our method accelerates the entire FDK algorithm
for CB projections without rebinning.

3 Overview of CUDA

Figure 1 illustrates an overview of the CUDA-enabled GPU. The GPU consists of mul-
tiprocessors (MPs), each having multiple stream processors (SPs). Each MP has small

Accelerating Cone Beam Reconstruction Using the CUDA-enabled GPU 3

PCI Express

CPU

Main memory

Chipset

Device memory

Constant

cache

Texture

Multiprocessor #1

Shared memory

SP #1 SP #2 SP #n

Multiprocessor #2

Multiprocessor #m

PCI Express

Graphics card

Device memory

Local memory

Global memory
Multiprocessor #1

Shared memory

Registers

Multiprocessor #2

Multiprocessor #m

Constant memory
Constant

cache

Registers Registers

SP #1 SP #2 SP #n

Texture memory
Texture

cache

Fig. 1. Architecture of CUDA-enabled GPU. SP denotes a stream processor.

on-chip memory, called shared memory, which can be accessed from internal SPs as
fast as registers. However, it is not shared between different MPs. Due to this con-
straint, threads are classified into groups and each group is called as a block, which
is the minimum allocation unit assigned to an MP. That is, developers have to write
their code such that there is no dependence between threads in different blocks. On the
other hand, threads in the same block are allowed to have dependence because they can
communicate each other by shared memory.

CUDA also exposes the memory hierarchy to developers, allowing them to maxi-
mize application performance by optimizing data access. As shown in Fig. 1, there is
off-chip memory, called device memory, containing texture memory, constant memory,
local memory, and global memory. Texture memory and constant memory have a cache
mechanism but they are not writable from SPs. Therefore, developers are needed to
transfer (download) data from main memory in advance of a kernel invocation. Texture
memory differs from constant memory in that it provides a hardware mechanism that
returns linearly interpolated texels from the surrounding texels. On the other hand, local
memory and global memory are writable from SPs but they do not have a cache mech-
anism. Global memory achieves almost the full memory bandwidth if data accesses can
be coalesced into a single access [8]. Local memory cannot be explicitly used by devel-
opers. This memory space is implicitly used by the CUDA compiler in order to avoid
resource consumption. For example, an array will be allocated to such space if it is too
large for register space. Local memory cannot be accessed in a coalesced manner, so
that it is better to eliminate such inefficient accesses hidden in the kernel code.

4 Feldkamp Reconstruction

The FDK algorithm [9] consists of the filtering stage and the backprojection stage.
Suppose that a series of U × V -pixel projections P1, P2, . . . PK are obtained by a scan
rotation of a detector in order to create an N3-voxel volume F . The algorithm then
applies the Shepp-Logan filter [13] to each projection, which gives a smoothing effect
to minimize noise propagation at the backprojection stage. At this filtering stage, the
pixel value Pn(u, v) at point (u, v) is converted to value Qn(u, v) such that:

Qn(u, v) =
S∑

s=−S

2
π2(1− 4s2)

W1(s, v)Pn(s, v), (1)

4 Yusuke Okitsu et al.

X-ray source

uv

x

z

y

dn

θn

d‘

Fig. 2. Coordinate system for backprojection. The xyz space represents the volume while the uv
plane represents a projection that is to be backprojected to the volume.

where S represents the filter size and W1(s, v) represents the weight value given by
W1(s, v) = d′/

√
d′2 + s2 + v2, where d′ represents the distance between the X-ray

source and the origin of the detector (projection), as shown in Fig. 2.
A series of filtered projections Q1, Q2, . . . QK are then backprojected to the volume

F . In Fig. 2, the xyz space corresponds to the target volume F while the uv plane
represents the n-th projection Pn that is to be backprojected to volume F from angle
θn, where 1 ≤ n ≤ K. Note here that the distance dn between the X-ray source and the
volume origin is parameterized for each projection, because it varies during the rotation
of a real detector. On the other hand, distance d′ can be modeled as a constant value in
C-arm systems.

Using the coordinate system mentioned above, the voxel value F (x, y, z) at point
(x, y, z), where 0 ≤ x, y, z ≤ N − 1, is computed by:

F (x, y, z) =
1

2πK

K∑
n=1

W2(x, y, n)Qn(u(x, y, n), v(x, y, z, n)), (2)

where the weight value W2(x, y, n), the coordinates u(x, y, n) and v(x, y, z, n) are
given by:

W2(x, y, n) =
(dn

dn − xcosθn − ysinθn

)2

, (3)

u(x, y, n) =
d′(−xsinθn + ycosθn)
dn − xcosθn − ysinθn

, (4)

v(x, y, z, n) =
d′z

dn − xcosθn − ysinθn
. (5)

The coordinates u(x, y, n) and v(x, y, z, n) are usually real values rather than integer
values. Since projections P1, P2, . . . PK are given as discrete data, we need an interpo-
lation mechanism to obtain high-quality volume.

Accelerating Cone Beam Reconstruction Using the CUDA-enabled GPU 5

CPU GPU

Projections

Volume

1. Download of projections

2. Filtering

3. Backprojection

5. Readback of volume
Volume

Projections

Filtered Projections

CPU GPU

Projections

Volume

1. Download of projections

2. Filtering

4. Repeat steps 1.-3.
3. Backprojection

5. Readback of volume
Volume

Projections

Filtered Projections

Fig. 3. Overview of the proposed method. Projections are serially sent to the GPU in order to
accumulate their pixels into the volume in video memory.

5 Proposed Method

To make the description easier to understand, we first show a naive method and then the
proposed method with acceleration techniques.

5.1 Parallelization Strategy

Since a 5123-voxel volume requires at least 512 MB of memory space, it is not easy for
commodity GPUs to store both the entire volume and the projections in device memory.
To deal with this memory capacity problem, we have decided to store the entire volume
in device memory because earlier projections can be processed and removed before the
end of a scan rotation. In other words, this decision allows us to structure the recon-
struction procedure into a pipeline. Figure 3 shows an overview of our reconstruction
method. In the naive method, the first projection P1 is transferred to global memory,
which is then filtered and backprojected to the volume F in global memory. This oper-
ation is iteratively applied to the remaining projections to obtain the final accumulated
volume F . See also Fig. 4 for the pseudocode of the naive method.

In Fig. 4, the filtering stage is parallelized in the following way. Eq. (1) means that
this stage performs a 1-D convolution in the u-axis direction. Thus, there is no data
dependence between different pixels in a filtered projection Qn. However, pixels in the
same column u refer partly the same pixels in projection Pn. Therefore, it is better to
use shared memory to save the memory bandwidth. Thus, we have decided to write the
filtering kernel such that a thread block is responsible for applying the filtering operation
to pixels in a column. On the other hand, a thread is responsible for computing a pixel
value Qn(u, v). As shown in Fig. 4, threads in the same block cooperatively copy a
column u to shared memory at line 13, which are then accessed instead of the original
data in global memory at line 15.

Similarly, there is no constraint at the backprojection stage in terms of parallelism.
That is, any voxel can be processed at the same time. However, it is better to use 1-D
or 2-D thread blocks rather than 3-D thread blocks in order to reduce the computational

6 Yusuke Okitsu et al.

Input: Projections P1 . . . PK , filter size S and
parameters d′, d1 . . . dK , θ1 . . . θK

Output: Volume F

Algorithm NaiveReconstruction()
1: Initialize volume F
2: for n = 1 to K do
3: Transfer projection Pn to global memory
4: Q← FilteringKernel(Pn, S)
5: Bind filtered projection Q as a texture
6: F ← BackprojectionKernel(Q, d′, dn, θn, n)
7: end for
8: Transfer volume F to main memory

Function FilteringKernel(P, S)
9: shared float array[U] // U : projection width

10: u← index(threadID) // returns responsible u
11: v ← index(blockID)
12: Initialize Q(u, v)
13: array[u]←W1(u, v) ∗ P (u, v) ∗ 2/π2

14: for s = −S to S do
15: Q(u, v)← Q(u, v) + array[u + s]/(1− 4s2)
16: end for
Function BackprojectionKernel(Q, d′, dn, θn, n)
17: x← index(blockID)
18: y ← index(threadID)
19: u← u(x, y, n) // Eq. (4)
20: v ← v(x, y, 0, n) // Eq. (5)
21: v′ ← v′(x, y, n) // Eq. (6)
22: for z = 0 to N − 1 do
23: F (x, y, z)← F (x, y, z) + W2(x, y, n) ∗Q(u, v)
24: v ← v + v′

25: end for

Fig. 4. Pseudocode of the native method. This code is a simplified version.

complexity by data reuse. This data reuse technique can be explained by Eqs. (3) and
(4), which indicate that W2(x, y, n) and u(x, y, n) do not depend on z. Therefore, these
two values can be reused for voxels in a straight line along the z-axis: line (X, Y, 0)−
(X, Y,N − 1), where X and Y are constant values in the range [0, N − 1]. To perform
this data reuse, our naive method employs 1-D thread blocks (but 2-D blocks after
optimization shown later in Section 5.2) that assign such voxels to the same thread. In
summary, a thread is responsible for a line while a thread block is responsible for a set
of lines: plane x = X for thread block X , where 0 ≤ X ≤ N − 1.

The data reuse can be further applied to reduce the complexity of Eq. (5). Although
v(x, y, z, n) depends on z, it can be rewritten as v(x, y, z, n) = v′(x, y, n)z, where

v′(x, y, n) =
d′

dn − xcosθn − ysinθn
. (6)

Accelerating Cone Beam Reconstruction Using the CUDA-enabled GPU 7

Function OptimizedBackprojectionKernel(Q[I ∗ J], d′, dn[I ∗ J], θn[I ∗ J], n)
1: var u[I], v[I], v′[I], w[I]
2: x← index(blockID, threadID)
3: y ← index(blockID, threadID)
4: for j = 0 to J − 1 do // unrolled
5: for i = 0 to I − 1 do
6: w[i]←W2(x, y, 3j + i + n) // Eq. (3)
7: u[i]← u(x, y, 3j + i + n) // Eq. (4)
8: v[i]← v(x, y, 0, 3j + i + n) // Eq. (5)
9: v′[i]← v′(x, y, 3j + i + n) // Eq. (6)

10: end for
11: for z = 0 to N − 1 do
12: F (x, y, z)← F (x, y, z) + w[0] ∗Q[3j](u[0], v[0])

+ w[1] ∗Q[3j + 1](u[1], v[1])
· · ·
+ w[I − 1] ∗Q[3j + (I − 1)](u[I − 1], v[I − 1])

13: for k = 0 to I − 1 do
14: v[k]← v[k] + v′[k]
15: end for
16: end for
17: end for

Fig. 5. Pseudocode of the proposed method. The actual code is optimized by loop unrolling, for
example.

Therefore, we can precompute v′(x, y, n) for any z (line 21), in order to incrementally
compute Eq. (5) at line 24.

Note that the filtered projection data is accessed as a texture. As we mentioned in
Section 4, the coordinates u(x, y, n) and v(x, y, z, n) are usually real values. Therefore,
we load the data Qn(u, v) from a texture, which returns a texel value interpolated by
hardware. This strategy contributes to a full utilization of the GPU, because the inter-
polation hardware is separated from processing units.

5.2 Accelerated Backprojection

The acceleration techniques we propose in this paper optimize the backprojection kernel
of the naive method. These techniques are motivated to maximize the effective memory
bandwidth because the backprojection stage is a memory-intensive operation. We max-
imize the effective bandwidth by two techniques which we mentioned in Section 1. The
naive method presented in Fig. 4 is modified to the optimized code shown in Fig. 5 by
the following five steps.

1. Memory access coalescing [8]. This technique is important to achieve a full utiliza-
tion of the wide memory bus available in the GPU. We store the volume data in
global memory so that the memory accesses can be coalesced into a single contigu-
ous, aligned memory access. This can be realized by employing 2-D thread blocks
instead of 1-D blocks. It also improves the locality of texture access, which leads
to a higher utilization of the texture cache.

8 Yusuke Okitsu et al.

2. Global memory access reduction. We modify the kernel to perform backprojection
of I projections at a time, where I represents the number of projections processed
by a single kernel invocation. This modification reduces the number of global mem-
ory accesses to 1/I because it allows us to write temporal voxel values to local
memory before writing the final values to global memory. We cannot use registers
because a large array of size N is needed to store the temporal values for all z (line
23 in Fig. 4). Note that the increase of I results in more consumption of resources
such as registers. We currently use I = 3, which is experimentally determined for
the target GPU.

3. Local memory access reduction. The technique mentioned above decreases ac-
cesses to global memory but increases those to local memory. In order to reduce
them, we pack I successive assignments into a single assignment. This modifica-
tion is useful if the assignments have the same destination variable placed in local
memory.

4. Local memory access elimination. We now have a single assignment for accumu-
lation, so that we can write the accumulated values directly to global memory, as
shown at line 12 in Fig. 5.

5. Memory latency hiding. We pack J successive kernel calls into a single call by
unrolling the kernel code. A kernel invocation now processes every I projections J
times. This modification is useful to hide the memory latency with computation. For
example, if SPs are waiting for memory accesses needed for the first I projections,
they can perform computation for the remaining I(J − 1) projections. As we did
for I , we have experimentally decided to use J = 2.

6 Experimental Results

In order to evaluate the performance of the proposed method, we now show some ex-
perimental results including a breakdown analysis of execution time and a comparison
with prior methods: the OpenGL-based method [2]; the prior CUDA-based method [3];
the Cell-based method [1]; and the CPU-based method [1]. For experiments, we use
a desktop PC equipped with a Core 2 Duo E6850 CPU, 4GB main memory, and an
nVIDIA GeForce 8800 GTX GPU with 768MB video memory. Our implementation
runs on Windows XP with CUDA 1.1 and ForceWare graphics driver 169.21. Figure
6 shows the Shepp-Logan phantom [13], namely a standard phantom widely used for
evaluation. The data size is given by U = V = N = 512, K = 360, and S = 256.

6.1 Performance Comparison

Table 1 shows the execution time needed for reconstruction of the Shepp-Logan phan-
tom. Since the number K of projections differs from prior results [1, 3], we have nor-
malized them to the same condition (K = 360 and U = V = 512) as prior work [1, 2]
did in the paper. The proposed method achieves the fastest time of 5.6 seconds, which
is 29% and 18% faster than the OpenGL-based method [2] and the prior CUDA-based
method [3], respectively. This performance is equivalent to 64.3 projections per second
(pps), which represents the throughput in terms of input projections. On the other hand,

Accelerating Cone Beam Reconstruction Using the CUDA-enabled GPU 9

(a) (b)

Fig. 6. Sectional views of the Shepp-Logan phantom [13] reconstructed (a) by the GPU and (b)
by the CPU.

Table 1. Performance comparison with prior methods. Throughput is presented by projections
per second (pps).

Method Hardware Execution time (s) Throughput (pps)
CPU [1] Xeon 3.06 GHz 135.4 2.8
Cell [1] Cell Broadband Engine 9.6 37.6
OpenGL [2] GeForce 8800 GTX 8.9 40.5
Prior CUDA [3] GeForce 8800 GTX 7.9 45.5
OpenGL w/ EFK [2] GeForce 8800 GTX 6.8 52.9
Proposed method GeForce 8800 GTX 5.6 64.3

the image acquisition speed in recent CT scans ranges from 30 to 50 pps [2]. There-
fore, the performance achieved by the proposed method is sufficient enough to produce
the entire volume immediately after a scan rotation. Note here that the OpenGL-based
method is also faster than the image acquisition speed if it is accelerated by the EFK
technique. However, as we mentioned in Section 2, this technique does not reconstruct
the volume area outside the ROI. In contrast, the proposed method reconstructs the
entire volume within a shorter time.

Table 2 shows a breakdown of execution time comparing our method with the prior
CUDA-based method. We can see that the acceleration is mainly achieved at the back-
projection stage. As compared with the prior method, our method processes multiple
projections at a kernel invocation. Therefore, we can reduce the number and amount of
global memory accesses by packing I assignments into a single assignment, as shown
at line 12 in Fig. 5. This reduction technique cannot be applied to the prior method,
which processes a single projection at a time. Since we use I = 3, the proposed method
achieves 67% less data transfer between MPs and global memory. With respect to the fil-
tering stage, our method achieves the same performance as the prior method, which uses
the nVIDIA CUFFT library. In this sense, we think that our filtering kernel achieves per-
formance competitive to the vendor library. We also can see that the proposed method

10 Yusuke Okitsu et al.

Table 2. Breakdown of execution time.

Breakdown item Proposed method (s) Prior CUDA [3] (s)
Initialization 0.1 N/A
Projection download 0.2 0.2
Filtering 0.7 0.7
Backprojection 4.3 6.1
Volume readback 0.3 0.9
Total 5.6 7.9

Table 3. Effective floating point performance and memory bandwidth of our kernels. We assume
that the GPU issues a single instruction per clock cycle and a stream processor executes two
floating point (multiply-add) arithmetics per clock cycle. The effective memory bandwidth can
be higher than the theoretical value due to cache effects.

Performance measure
Measured value Theoretical

Filtering Backprojection value
Instruction issue (MIPS) 1391 980 1350

Floating point
Processing units 105.8 38.3 345.6

(GFLOPS)
Texture units — 124.3 172.8
Total 105.8 162.6 518.4

Memory bandwidth (GB/s) 130.5 71.0 86.4

transfers the volume three times faster than the prior method. We think that this is due
to the machine employed for the prior results, because the transfer rate is mainly deter-
mined by the chipset in the machine. Actually, there is no significant difference between
the download rate and the readback rate in our method.

Table 3 shows the measured performance with the theoretical peak performance.
We count the number of instructions in assembly code to obtain the measured values.
This table indicates that the instruction issue rate limits the performance of the filtering
kernel. Due to this bottleneck, the floating point performance results in 105.8 GFLOPS,
which is equivalent to 20% of the peak performance. On the other hand, the effective
memory bandwidth reaches 130.5 GB/s, which is higher than the theoretical value.
This is due to the cache mechanism working for constant memory. The filtering kernel
accesses 130 times more constant data, as compared with the variable data in global
memory.

In contrast, the memory bandwidth is a performance bottleneck in the backprojec-
tion kernel. This kernel has more data access to global memory, which does not have
cache effects. Actually, global memory is used for 40% of total amount. Thus, the back-
projection kernel has lower effective bandwidth than the filtering kernel. However, the
backprojection kernel achieves higher floating point performance because it exploits
texture units for linear interpolation. The effective performance reaches 162.6 GFLOPS
including 124.3 GFLOPS observed at texture units. Exploiting this hardware interpo-
lation is important (1) to reduce the amount of data accesses between device memory
and SPs and (2) to offload workloads from SPs to texture units. For example, SPs must
fetch four times more texel data if we perform linear interpolation on them.

Accelerating Cone Beam Reconstruction Using the CUDA-enabled GPU 11

Table 4. Backprojection performance with different acceleration techniques.

Technique
Method

Naive #1 #2 #3 #4 Proposed
1. Memory access coalescing × © © © © ©
2. Global memory access reduction × × © © © ©
3. Local memory access reduction × × × © © ©
4. Local memory access elimination × × × × © ©
5. Memory latency hiding × × × × × ©
Backprojection time (s) 436.7 27.0 15.6 13.5 5.7 4.3

6.2 Breakdown Analysis

In order to clarify how each acceleration technique contributes to higher performance,
we develop five subset implementations and measure their performance. Table 4 shows
the details of each implementation with the measured time needed for backprojection of
the Shepp-Logan phantom. Although the naive method is slower than the CPU-based
method, the acceleration techniques reduce the backprojection time to approximately
1/102. This improvement is mainly achieved by memory access coalescing that reduces
backprojection time to 27.0 seconds with a speedup of 16.2. In the naive method, every
thread simultaneously accesses voxels located on the same coordinate x. This access
pattern is the worst case, where 16 accesses can be coalesced into a single access [8],
explaining why memory access coalescing gives such a speedup. Thus, the coalescing
technique is essential to run the GPU as an accelerator for the CPU.

Reducing off-chip memory accesses further accelerates the backprojection kernel.
As compared with method #1 in Table 4, method #4 has 66% less access to local mem-
ory and global memory, leading to 44% reduction of device memory access. On the
other hand, the backprojection time is reduced to 5.7 seconds with a speedup of 4.7,
whereas the speedup estimated from the reduction ratio of 44% becomes approximately
1.8. Thus, there is a gap between the measured speedup and the estimated speedup. We
think that this gap can be explained by cache effects.

The last optimization technique, namely memory latency hiding, reduces the time
by 25%. We analyze the assembly code to explain this reduction. Since we use J = 2 for
the proposed method, we think that memory accesses for j = 0 can be overlapped with
computation for j = 1 (line 4 in Fig. 5). We find that such overlapping computation
takes approximately 1.3 seconds under the optimal condition, where MPs execute an
instruction on each clock cycle. This probably explains why the time is reduced from
5.7 to 4.3 seconds.

7 Conclusion

We have presented a fast method for CB reconstruction on the CUDA-enabled GPU.
The proposed method is based on the FDK algorithm accelerated using two techniques:
off-chip memory access reduction; and memory latency hiding. We have described how
these techniques can be incorporated into CUDA code. The experimental results show
that the proposed method takes 5.6 seconds to reconstruct a 5123-voxel volume from

12 Yusuke Okitsu et al.

360 5122-pixel projection images. This execution time is at least 18% faster than the
prior methods [2, 3], allowing us to obtain the entire volume immediately after a scan
rotation of the flat panel detector. We also find that the filtering and backprojection per-
formances are limited by the instruction issue rate and the memory bandwidth, respec-
tively. With respect to acceleration techniques, memory access coalescing is essential
to run the GPU as an accelerator for the CPU.

References

1. Kachelrieß, M., Knaup, M., Bockenbach, O.: Hyperfast parallel-beam and cone-beam back-
projection using the cell general purpose hardware. Medical Physics 34(4) (April 2007)
1474–1486

2. Xu, F., Mueller, K.: Real-time 3D computed tomographic reconstruction using commodity
graphics hardware. Physics in Medicine and Biology 52(12) (June 2007) 3405–3419

3. Scherl, H., Keck, B., Kowarschik, M., Hornegger, J.: Fast GPU-based CT reconstruction
using the common unified device architecture (CUDA). In: Proc. Nuclear Science Symp.
and Medical Imaging Conf. (NSS/MIC’07). (October 2007) 4464–4466

4. Riabkov, D., Xue, X., Tubbs, D., Cheryauka, A.: Accelerated cone-beam backprojection
using GPU-CPU hardware. In: Proc. 9th Int’l Meeting Fully Three-Dimensional Image Re-
construction in Radiology and Nuclear Medicine (Fully 3D ’07). (July 2007) 68–71

5. Zhao, X., Bian, J., Sidky, E.Y., Cho, S., Zhang, P., Pan, X.: GPU-based 3D cone-beam CT
image reconstruction: application to micro CT. In: Proc. Nuclear Science Symp. and Medical
Imaging Conf. (NSS/MIC’07). (October 2007) 3922–3925

6. Schiwietz, T., Bose, S., Maltz, J., Westermann, R.: A fast and high-quality cone beam recon-
struction pipeline using the GPU. In: Proc. SPIE Medical Imaging 2007. (February 2007)
1279–1290

7. Gac, N., Mancini, S., Desvignes, M.: Hardware/software 2D-3D backprojection on a SoPC
platform. In: Proc. 21st ACM Symp. Applied Computing (SAC’06). (April 2006) 222–228

8. nVIDIA Corporation: CUDA Programming Guide Version 1.1 (November 2007) http:
//developer.nvidia.com/cuda/.

9. Feldkamp, L.A., Davis, L.C., Kress, J.W.: Practical cone-beam algorithm. J. Optical Society
of America 1(6) (June 1984) 612–619

10. Li, M., Yang, H., Koizumi, K., Kudo, H.: Fast cone-beam CT reconstruction using CUDA
architecture. Medical Imaging Technology 25(4) (September 2007) 243–250 (In Japanese).

11. Ikeda, T., Ino, F., Hagihara, K.: A code motion technique for accelerating general-purpose
computation on the GPU. In: Proc. 20th IEEE Int’l Parallel and Distributed Processing Symp.
(IPDPS’06). (April 2006) 10 pages (CD-ROM).

12. Grass, M., Köhler, T., Proksa, R.: 3D cone-beam CT reconstruction for circular trajectories.
Physics in Medicine and Biology 45(2) (February 2000) 329–347

13. Shepp, L.A., Logan, B.F.: The fourier reconstruction of a head section. IEEE Trans. Nuclear
Science 21(3) (June 1974) 21–43

