
Design and Implementation of the Smith-Waterman Algorithm on
the CUDA-Compatible GPU

Yuma Munekawa, Fumihiko Ino, Member, IEEE, and Kenichi Hagihara

Abstract— This paper describes a design and implementation
of the Smith-Waterman algorithm accelerated on the graphics
processing unit (GPU). Our method is implemented using
compute unified device architecture (CUDA), which is available
on the nVIDIA GPU. The method efficiently uses on-chip shared
memory to reduce the data amount being transferred between
off-chip memory and processing elements in the GPU. Fur-
thermore, it reduces the number of data fetches by applying a
data reuse technique to query and database sequences. We show
some experimental results comparing the proposed method with
an OpenGL-based method. As a result, the speedup over the
OpenGL-based method reaches a factor of 6.4 when using
amino acid sequence database. We also find that shared memory
reduces the amount of data fetches to 1/140, providing a peak
performance of 5.65 giga cell updates per second (GCUPS).
This performance is approximately three times faster than a
prior CUDA-based implementation.

I. INTRODUCTION

THE Smith-Waterman (SW) algorithm [1] is a well-
known method for finding the optimal local alignment

between two sequences. This algorithm is used by biologists
to search meaningful sequences in biological databases.
However, it requires a large amount of computation due
to its high computational complexity, which is proportional
to the product of the length of two sequences. Thus, some
acceleration methods are needed to apply this algorithm to
real databases, such as SWISS-PROT [2] and GenBank [3],
which rapidly grow the data size.

Heuristic methods solve the alignment problem more
quickly than exact methods. For example, BLAST [4] and
FASTA [5] are now widely used in many research projects,
because they are up to 40 times faster than a straightforward
implementation of the SW algorithm [6]. However, heuristic
methods have a problem of sensitivity.

Accordingly, many researchers are trying to accelerate
the SW algorithm using various computing systems, aiming
at providing a successful solution that is not only fast but
also sensitive. For example, Manavski et al. [6] show a fast
parallel implementation running on the graphics processing
unit (GPU) [7], namely a commodity chip designed for
acceleration of visualization applications. They implement
the algorithm using compute unified device architecture
(CUDA) [8], which is a development framework for per-
forming general-purpose computation on the nVIDIA GPU.

Manuscript received July 2, 2008. This work was partly supported by
JSPS Grant-in-Aid for Scientific Research (A)(2)(20240002), Young Re-
searchers (B)(19700061), and the Global COE Program “in silico medicine”
at Osaka University.

Y. Munekawa, F. Ino, and K. Hagihara are with the Graduate School of
Information Science and Technology, Osaka University, 560-8531 Osaka,
Japan (e-mail: {y-munekw,ino}@ist.osaka-u.ac.jp).

Their implementation demonstrates good acceleration results
over the CPU implementation. However, it can be improved
to fully utilize memory resources available on the GPU. For
example, on-chip shared memory can be exploited to save
the bandwidth between the GPU and off-chip memory.

In this paper, we present a design and implementation of
the SW algorithm on the CUDA-compatible GPU, aiming
at making it clear how memory resources should be used
to achieve a further acceleration of this memory-intensive
algorithm. Our method uses on-chip shared memory to
reduce the data amount being transferred between off-chip
memory and processing elements in the GPU. Furthermore,
it also reduces the number of data fetches by applying a data
reuse technique to query and database sequences.

The rest of the paper is organized as follows. We begin in
Section II by introducing related work. Section III features
the CUDA framework and Section IV gives an overview of
the SW algorithm. Section V then describes our CUDA-
based method and Section VI shows experimental results.
Finally, Section VII concludes the paper.

II. RELATED WORK

To the best of our knowledge, Liu et al. [9] develop the
first implementation running on the GPU. Since their work is
done before the dawning of CUDA, they employ the OpenGL
library [10], namely a graphics library, to implement the SW
algorithm on the GPU. They show how the algorithm can
be mapped onto the graphics pipeline. Using an nVIDIA
GeForce 7800 GTX card, their implementation achieves a
10-fold speedup over SSEARCH [5], a heuristic implemen-
tation of the SW algorithm running on the CPU. It provides
a peak performance of 0.67 giga cell updates per second
(GCUPS) at a query of length 4092.

Manavski et al. [6] present a CUDA-based implementation
for the SW algorithm. Their performance reaches a peak of
3.6 GCUPS using two GeForce 8800 cards, but it is not
clear whether this performance includes the data transfer
time needed before/after GPU execution. We think that the
design can be improved to utilize the full resources on the
GPU, because they partly use local memory, which is the
slowest memory resource on the GPU card. A similar work
but with a heuristic algorithm is presented by Schatz et al.
[11]. Their CUDA-based implementation achieves a 3.5-fold
speedup over a CPU implementation.

Farrar [12] proposes a CPU-based SW implementation
optimized using SSE instructions. These instructions are
originally designed to accelerate multimedia applications by

GPU Device memory

Global memory

Texture memory

Constant memory

Multiprocessor (MP)

Shared memory

SP

Reg

MP

Cache

Cache

Main

memory

CPU

Graphics card

...
SP

..
.

Local memory

Reg

Fig. 1. Hardware model in CUDA. SP and reg denote stream processor
and register, respectively.

performing single-instruction, multiple-data (SIMD) compu-
tation. The implementation delivers a peak performance of
3.0 GCUPS on a 2.0 GHz Core 2 Duo processor.

Zhang et al. [13] propose a field programmable gate
array (FPGA) solution for the SW algorithm. Their solution
provides a peak of 25.6 GCUPS, which is 250 times faster
than a CPU version running on a 2.2 GHz Opteron processor.
One drawback of FPGA solutions is the cost of expensive
FPGAs because FPGAs are not so widely used as compared
with GPUs, which have a strong market in the entertainment
area. A similar work is presented by Li et al. [14].

III. COMPUTE UNIFIED DEVICE ARCHITECTURE
(CUDA)

CUDA [8] is a programming environment for writing and
running general-purpose applications on the nVIDIA GPU.
This environment allows us to efficiently run highly-threaded
applications on the GPU, regarding it as a massively parallel
machine that computes threads on hundreds of processing
elements. The kernel, namely the program running for every
thread but each with a different thread ID, can be written in
the C-like language.

Figure 1 summarizes the hardware model in CUDA. This
model mainly consists of two parts: the GPU itself and off-
chip device memory. The GPU consists of several multi-
processors (MPs), each including a set of stream processors
(SPs) and shared memory, which is useful to save the
memory bandwidth between SPs and device memory. During
kernel execution, each thread is assigned to an SP in order to
compute threads in a SIMD fashion. Thus, every SP within
the same MP executes the same instruction but operates on
a different thread at every clock cycle.

When writing CUDA programs, threads have to be struc-
tured into a hierarchy to batch them to MPs. In this hi-
erarchy, a group of threads is called as a thread block.
This hierarchical structure allows threads within the same
thread block to share data in shared memory, namely fast
on-chip memory. However, threads belonging to different
thread blocks are not allowed to share data, because thread
blocks are independently assigned to each of MPs. Therefore,
developers must write their code such that there is no data
dependence between different thread blocks.

Table I summarizes a hierarchy of memory resources
provided by CUDA. Shared memory is as fast as registers

TABLE I
MEMORY RESOURCES AVAILABLE IN CUDA. LATENCY IS PRESENTED

IN CLOCK CYCLES. THE CACHE WORKING SET IS 8 KB PER MP.

Memory Capacity Cache Latency Access
Register 8192 per MP

N/A
1 R/W per thread

Shared 16 KB per MP 1* R/W per block
Constant 64 KB

Yes 1–600** RTexture
512+ MBGlobal
(shared) No

400–600*** R/W
Local 400–600 R/W per thread
*: Accesses will be serialized if bank conflicts [8] happen
**: Latency depends on the locality of data accesses
***: Accesses can be coalesced if satisfying memory alignments [8]

while device memory takes 400 to 600 clock cycles to access
non-cached data. However, the capacity of shared memory
is limited by 16 KB per MP. In contrast, recent high-end
GPUs have at least 512 MB of device memory, which can be
used as constant, texture, global, and local memory. Constant
memory and texture memory are cached but not writable by
SPs. They are writable by the CPU in advance of kernel
invocation. Texture memory has a larger space than constant
memory.

The remaining local memory and global memory are not
cached but writable by SPs. Global memory is the only
space that can be used to send computational results back
to the CPU. Note here that satisfying memory alignment
requirements [8] is important to allow memory accesses to
be coalesced into a single access. This memory coalescing
technique increases the effective memory bandwidth by the
order of magnitude. Local memory is implicitly used if the
CUDA compiler consumes the register space. Since local
memory cannot be accessed in a coalesced manner, it is better
to explicitly use global memory instead of local memory to
avoid such an implicit, inefficient use.

IV. SMITH-WATERMAN ALGORITHM

The SW algorithm [1] is a dynamic programming method
for obtaining the optimal local alignment between two se-
quences. This algorithm finds similar segments in two steps:
(1) computation of a similarity matrix H and (2) backtracing
from the matrix cell with the highest score. As compared
with the backtracing step, the first step involves computation
by more than an order of magnitude. Therefore, we focus
on this bottleneck step, which we parallelize on the GPU.
Actually, backtracing can be quickly done on the CPU [9].

Let A denote a query sequence a1a2 . . . an of length n.
Let B denote a database sequence b1b2 . . . bm of length m to
be compared with the query sequence A. The algorithm then
computes an n × m-cell matrix H to obtain the similarity
for any pair of segments. Let Ei,j and Fi,j be the maximum
similarity involving the first i-th symbols in A and the first j-
th symbols in B, respectively. The maximum similarity Hi,j

of two segments ending in ai and bj , respectively, is then
recursively defined as follows:

Hi,j = max{0, Ei,j , Fi,j ,Hi−1,j−1 + W (ai, bj)}, (1)

where W (ai, bj) represents a scoring matrix. Similarities
Ei,j and Fi,j are given by

Ei,j = max{Hi,j−1 − Ginit, Ei,j−1 − Gext}, (2)
Fi,j = max{Hi−1,j − Ginit, Fi−1,j − Gext}, (3)

where Ginit and Gext are penalties for opening a new gap
and for extending an existing gap, respectively. The values
for Hi,j , Ei,j , and Fi,j are defined as zero if i < 1 or j < 1.

In general, the scoring matrix is experimentally determined
as W (ai, bj) > 0 if ai = bj and W (ai, bj) < 0 if ai 6= bj .
The penalties are called as linear gap penalties if Ginit =
Gext. Otherwise, they are affine gap penalties.

V. PROPOSED METHOD

The parallelization strategy we use for the proposed
method is based on that employed in Liu’s OpenGL-based
method [9]. For better understanding of the proposed method,
we first show the strategy then describe our memory assign-
ment scheme and data reuse scheme.

A. Parallelization Strategy

Eqs. (1)–(3) indicate that matrix cell Hi,j depends on its
left neighbor Hi,j−1, upper neighbor Hi−1,j , and upper-left
neighbor Hi−1,j−1. Therefore, cells on the k-th antidiagonal
depend on the (k − 1)-th and the (k − 2)-th antidiagonals,
where 1 ≤ k ≤ m+n−1. In contrast, there is no dependence
between any cells on the same antidiagonal. Thus, matrix H
for a pairwise alignment must be serially computed from the
first to the last antidiagonal but each antidiagonal can be
computed in parallel with a maximum parallelism of n.

This dependency implies that we do not need the entire
matrix H to find the cell with the highest score. Instead of
the entire matrix, we allocate memory space only for three
antidiagonals, and then reuse them for all 1 ≤ k ≤ m+n−1,
because the k-th (current) antidiagonal can be computed from
the last two antidiagonals. Thus, as same as Liu’s method
[9], our method does not store the entire matrix H . Using
the three antidiagonals at each iteration of the k loop, our
method computes the highest score Si for every column i in
matrix H , where 1 ≤ i ≤ n.

The parallelism mentioned above is not so high as com-
pared with the length of sequences. To exploit more paral-
lelism for higher efficiency, Liu et al. extend this strategy
for N pairwise alignments. Since the query sequence can be
independently aligned to different database sequences, they
perform embarrassingly parallel computation to compute N
matrices at the same time.

Figure 2 shows how we adapt the strategy to the CUDA
framework. Our method assigns a pairwise alignment to
each of thread blocks in order to perform embarrassingly
parallel computation of N pairwise alignments. On the other
hand, each of n threads in a thread block is responsible for
computing a column in matrix H . Thus, a kernel invocation
solves N pairwise alignments using nN threads. The kernel
is iteratively launched with varying the database sequences
until reaching the last entry in the database.

Block N-1

..
.

......

...
N matrices

a1

a2

a
n

b1 b2 b3
b
m

..
.

0 ...0 0 0 0

0

0

0

H1,1H1,2

H2,1

H1,3

H2,2

Thread 0

Thread 1 H2,m

H
n,1Thread n-1

..
.

...

...

Block 0

H1,m

H
n,m

m+n-1 antidiagonals

..
.

Block N-1

..
.

...Block N-1

..
.

......

...
N matrices

a1

a2

a
n

b1 b2 b3
b
m

..
.

0 ...0 0 0 0

0

0

0

H1,1H1,2

H2,1

H1,3

H2,2

Thread 0

Thread 1 H2,m

H
n,1Thread n-1

..
.

...

...

Block 0

H1,m

H
n,m

m+n-1 antidiagonals

..
.

a1

a2

a
n

b1 b2 b3
b
m

..
.

0 ...0 0 0 0

0

0

0

H1,1H1,2

H2,1

H1,3

H2,2

Thread 0

Thread 1 H2,m

H
n,1Thread n-1

..
.

...

...

Block 0

H1,m

H
n,m

m+n-1 antidiagonals

..
.

Fig. 2. Parallelization of matrix computation for N pairwise alignments.
Matrix cells on the same antidiagonal are illustrated here in a row. Given
a query sequence a1a2 . . . an and N database queries, cells on the k-th
antidiagonals of N matrices are computed in parallel, where 1 ≤ k ≤
m + n − 1. Thus, matrix cells are computed by nN threads from left to
right in this figure.

Note here that it is important to sort database sequences
by their length m before alignments [9]. Otherwise, it will
cause a load imbalance problem because every thread block
has a different number m + n + 1 of iterations to fill the
matrix H . The sorting procedure will balance the workload
between thread blocks.

B. Memory Assignment Scheme

In our method, each of matrix cells on the (k − 1)-th
antidiagonal are accessed by multiple threads that compute
cells on the k-th antidiagonal, where 1 ≤ k ≤ m + n − 1.
For example, cell Hi−1,j is needed to compute Hi,j and
Hi−1,j+1 on the (i + j − 1)-th antidiagonal. Therefore,
we can reduce the number of data fetches from device
memory if such commonly accessed data is stored in shared
memory. To reduce this, our method stores the (k − 1)-
th (last computed) antidiagonal in shared memory. On the
other hand, we store the k-th (current) and the (k − 2)-
th (second last) antidiagonals on registers, because they are
accessed only by the responsible thread. The highest scores
S1, S2, . . . , Sn are stored in global memory to send them
back to the CPU.

Since all threads refer the same query sequence A, we
incorporate cache effects by storing the query A as character
data in constant memory. On the other hand, we select texture
memory for database sequences, because they consume more
than 100 MB of memory space. Since N database sequences
have different lengths, each of length m is stored in constant
memory as an integer value. Thus, the kernel consumes 4N+
n bytes of constant memory in total. We currently use N =
8192 according to the capacity of shared memory (Table I).
Similarly, a thread block requires 4n bytes of shared memory
and at least 2n registers for antidiagonals. Due to the capacity
of shared memory and registers, the kernel requires n < 4096
to run.

With respect to the scoring matrix W , it can be stored in
registers, constant memory, or texture memory according to

= char register

Time
Sync

a1 H1,1

b1

= char register

Time
Sync

a1 H1,1

b1b1

(a)

= char4 register

Time

H2,4

Sync

b1 b2 b3 b4

Sync Sync Sync

a1

a2

a3

a4

H3,3 H3,4

H4,2 H4,3 H4,4

= char4 register

Time

H2,4

Sync

b1 b2 b3 b4b1 b2 b3 b4

Sync Sync Sync

a1

a2

a3

a4

H3,3 H3,4

H4,2 H4,3 H4,4

(b)

Time
Sync

b5 b6 b7 b8

b1 b2 b3 b4

Sync Sync Sync

a1

a2

a3

a4

H2,4

H3,3 H3,4

H4,2 H4,3 H4,4

H1,5 H1,6 H1,7

H2,5 H2,6 H2,7

H1,8

H3,5 H3,6

H4,5

Time
Sync

b5 b6 b7 b8b5 b6 b7 b8

b1 b2 b3 b4b1 b2 b3 b4

Sync Sync Sync

a1

a2

a3

a4

H2,4

H3,3 H3,4

H4,2 H4,3 H4,4

H1,5 H1,6 H1,7

H2,5 H2,6 H2,7

H1,8

H3,5 H3,6

H4,5

(c)

Fig. 4. Data reuse scheme with vectorization and lookahead techniques. (a) the naive scheme, (b) the vector scheme, and (c) that with lookahead, each
showing matrix cell(s) computed by a single thread at a single iteration of the k loop. The naive scheme can be vectorized to reduce the number of texture
fetches and to achieve a higher parallelism. Lookahead of the database sequence, b5b6b7b8 in this example, allows us to compute 4 × 4 matrix cells per
fetch. Without this lookahead, the computation is restricted to only six cells located in the lower triangular area.

Input: query sequence constant char query[n],
N database sequences DBtex[m][N]

Output: highest scores S[nN] for every column of N matrices
1. shared int Ds[n] // (k − 1)-th antidiagonal
2. Ds[tid] := −1; // tid: thread ID
3. dia := 0; // (k − 2)-th antidiagonal
4. que := query[tid];
5. for k := 0 to m + n − 2 do // for all antidiagonals
6. idx := k − tid;
7. if (idx < 0) or (idx > n) then ; // out of cells
8. else
9. sub := DBtex[idx][bid]; // bid: block ID

10. if (que == sub) then W := 2; // compute W (ai, bj)
11. else W := −1;
12. end if
13. H := max(max(max(0, dia + W),

Ds[tid]), Ds[tid + 1]); // compute Eq. (1)
14. score := max(score, H); // update the highest score

// update the diagonals for the next iteration
15. dia := Ds[tid + 1] + 1;
16. Ds[tid + 1] := H − 1;
17. end if
18. syncthreads(); // synchronization
19. end for
20. S[bid ∗ size + tid] := score; // size = 16dn/16e

Fig. 3. Pseudocode of naive version of proposed kernel. This naive kernel
uses shared memory but does not reuse data for the sake of simplicity. It
assumes a linear gap penalty: Ginit = Gext = 1. The thread 〈tid, bid〉
is responsible for the (tid + 1)-th column of matrix H computed for the
(bid + 1)-th database sequence.

the matrix size. We currently encode the scoring matrix W
in the kernel code.

Figure 3 shows a pseudocode of the proposed kernel. Let
tid and bid denote the thread ID and the block ID, respec-
tively. This kernel is invoked for every thread 〈tid, bid〉,
where 0 ≤ tid < n and 0 ≤ bid < N . In this kernel, the
antidiagonals of matrix H are swept by the k loop at line
5. Note here that every thread does not always update its
responsible column at each iteration. For example, only the
first threads 〈tid, bid〉 = 〈0, ∗〉 are allowed to compute the
antidiagonals of N matrices when k = 1. Such flow control
is realized by the branch instruction at line 7. Threads that

are allowed to compute a matrix cell Hi,j fetch the symbol
bj from the database texture at line 9, and then compute the
cell Hi,j at line 13. After this, they update the responsible
antidiagonals at lines 15 and 16 for the next iteration. Since
this update is done using shared memory, synchronization
is needed before proceeding to the next iteration. Finally,
every thread copies the highest score Stid+1 of its responsible
column tid + 1 to global memory at line 20. The highest
scores S1, S2, . . . , Sn are written in a coalesced manner
in order to use the full memory bandwidth. This memory
coalescing can be realized if all of the first threads 〈0, ∗〉
write the responsible score to an offset address of a multiple
of 16. Therefore, we use size = 16dn/16e at line 20.

C. Data Reuse Scheme

Our data reuse scheme aims at reducing the number of
texture fetches needed for matrix computation. To realize
this, we pack the sequences into vector data formatted
in type char4 [8], as shown in Fig. 4(b). Accordingly,
the modified kernel assigns four succeeding columns to
each thread, performing per-vector computation. Therefore,
a thread block contains dn/4e threads after vectorization.
Since thread blocks are currently allowed to have a maximum
of 512 threads per block [8], the vector kernel requires
n ≤ 2048 to run.

The vector kernel fetches vector data instead of scalar data.
One important point here is that it is better to incorporate
a lookahead of database symbols to compute 4 × 4 cells at
each iteration (see Fig. 4(c)). Otherwise, as shown in Fig.
4(b), the computation is restricted to only six cells because
the responsible thread has not yet loaded the database sym-
bols needed for that computation. Since four columns are
computed at each iteration, the number of iterations reduces
from m + n− 1 to d(m + n− 1)/4e if using the lookahead.

The data reuse scheme also contributes to reduce the
amount of data being transferred from device memory. At
each iteration, the naive kernel fetches a symbol bj of the

TABLE II
PERFORMANCE COMPARISON WITH OPENGL-BASED METHOD [9].

EXECUTION TIME CONTAINS GPU TIME, CPU TIME, AND CPU–GPU
TRANSFER TIME.

Query length Execution time T (s) Throughput P (GCUPS)
n Proposed OpenGL Proposed OpenGL
63 2.96 10.25 1.93 0.56
127 3.38 15.93 3.40 0.72
191 3.98 21.74 4.34 0.80
255 4.66 27.24 4.95 0.85
319 6.04 33.30 4.78 0.87
383 6.67 39.68 5.20 0.88
447 7.57 46.21 5.35 0.88
511 8.19 52.78 5.65 0.88

database sequence to compute a matrix cell Hi,j . In contrast,
the vector kernel with the lookahead technique fetches four
succeeding symbols of the database sequence and computes
16 matrix cells per iteration. Therefore, the vector kernel
reduces texture fetches by 75% as compared with the naive
kernel. Furthermore, it also reduces the number of branch
instructions at line 7 in Fig. 3, due to the less number of
iterations.

VI. EXPERIMENTAL RESULT

We now show some experimental results to evaluate the
performance of the proposed method. We compare it with the
OpenGL-based method [9]. For experiments, we use a desk-
top PC equipped with a 3.0 GHz Core 2 Duo E6850 CPU, 4
GB main memory, and an nVIDIA GeForce 8800 GTX GPU
with 768 MB device memory. All implementations run on
Windows XP with driver version 169.21. The methods are
implemented using Visual Studio 2005 and CUDA 1.1 [8].
We also use nVIDIA SDK 9.5 and C for graphics (Cg) 1.5
[15] for graphics libraries.

The experiments are conducted using query sequences of
length n ranging from 63 to 511 amino acids. All queries are
run against the SWISS-PROT database [2]. This database is
approximately 121 MB in file size, containing 250, 143 (=
|B|) entries with a total of 90,588,910 amino acids. Thus, the
average length mavg of database sequences is mavg = 362.
The database sequences are sorted according to length m in
advance.

Table II shows the execution time T and the throughput
P in GCUPS for query sequences with different length n,
where P = mavgn|B|/T . The execution time here contains
the time T1 spent on the GPU, that T2 on the CPU, and
that T3 needed for data transfer between main memory and
device memory. Alignments are carried out with a linear gap
penalty Ginit = Gext = 1 and a scoring matrix W such that
W (ai, bj) = 2 if ai = bj and W (ai, bj) = −1 otherwise.

The proposed method is up to 6.4 times faster than the
OpenGL method. This performance is equivalent to 5.65
GCUPS while the prior CUDA-based implementation [6]
provides 1.85 GCUPS on the same single GPU card. Thus,
we obtain a 3-fold speedup using the appropriate memory
resource.

TABLE III
BREAKDOWN OF EXECUTION TIME FOR QUERY LENGTH n = 255.

Breakdown Proposed (s) OpenGL (s)
GPU time T1 2.76 13.42
CPU time T2 1.44 11.99
CPU–GPU transfer time T3 0.46 1.83
Total T 4.66 27.24

TABLE IV
EFFECTIVE PERFORMANCE OF CUDA-BASED KERNEL AND

OPENGL-BASED KERNEL [9].

Query length Floating point (GFLOPS) Effective BW (GB/s)
n Proposed OpenGL Proposed OpenGL
63 42.45 11.14 1.28 47.46

127 61.38 12.75 1.86 54.34
191 65.67 13.37 1.99 56.97
255 66.12 13.60 2.00 57.98
319 55.21 13.44 1.67 57.27
383 57.49 13.29 1.74 56.66
447 56.50 13.04 1.71 55.59
511 58.29 12.68 1.77 54.02

Table III shows a breakdown of execution time T for n =
255, where the kernel achieves the highest performance (i.e.
the best performance with respect to the GPU time T1). Our
method reduces both the GPU time and the CPU time. By
comparing the GPU time, we can find that the CUDA-based
kernel achieves a 4.9-fold speedup over the OpenGL-based
kernel. This is mainly due to on-chip memory available in the
CUDA framework. Since this memory cannot be explicitly
used in the OpenGL framework, the OpenGL-based kernel
has to store matrix H in textures. In contrast, CUDA allows
us to explicitly use shared memory and registers in the kernel.
Thus, the explicit use of on-chip memory directly reduces the
amount of data transfer between device memory and SPs.

Another interesting point in Table III is that the CPU
time and the CPU–GPU transfer time also contribute to
reduce execution time T . Since the OpenGL-based method is
implemented on the graphics pipeline, non-graphics GPGPU
applications can suffer from graphics-related overheads, such
as texture bindings and geometry computation. Such addi-
tional overheads increase the CPU time, as compared with
the CUDA-based method. Due to the same reason, CUDA
provides a faster data transfer than OpenGL. It should be
noted here that CUDA applications does not always outper-
form OpenGL applications, because the OpenGL framework
enables us to use graphics-oriented hardware components
that are not available in CUDA.

We next analyze the efficiency of the kernel with respect
to floating point performance and memory bandwidth. In this
analysis, the number of floating point instructions is given by
8mavgn|B|, which is counted from the kernel. Similarly, the
effective bandwidth is computed from the number of memory
instructions needed for device memory access.

As shown in Table IV, the proposed method achieves at
least 3.8 times higher floating point performance than the
OpenGL-based method. However, the effective bandwidth
of our method results in 1/37 of that of the OpenGL-

TABLE V
IMPACT OF DATA REUSE SCHEME IN TERMS OF KERNEL PERFORMANCE.
THE PROPOSED METHOD DIFFERS FROM THE NAIVE METHOD IN USING

THE DATA REUSE TECHNIQUE. PERFORMANCE IS MEASURED USING

QUERY LENGTH n = 255.

Performance measure
CUDA

OpenGLProposed Naive
GPU time T1 (s) 2.76 4.15 13.42
Floating point (GFLOPS) 66.12 44.00 13.60
Effective BW (GB/s) 2.00 5.33 57.98

based method. These results indicate that the CUDA-based
method moves the performance bottleneck from the memory
bandwidth to the instruction issue rate. That is, it eliminates
the bottleneck by on-chip memory, but it now suffers from
computation. To confirm this, we measure the performance
on a GeForce 9800 GTX card, which has 17% higher clock
rate but 19% lower memory bandwidth than the 8800 GTX
card. We then find that the CUDA-based method increases
the throughput by 16% (a peak throughput of 6.58 GCUPS)
but the OpenGL-based method decreases the throughput
by 23% (a peak throughput of 0.68 GCUPS). Thus, the
performance bottleneck can vary according to the underlying
programming model though the same parallel algorithm is
implemented on the same hardware.

In our method, the amount of data transfer between device
memory and SPs is first reduced to 1/35 by the shared
memory scheme and further reduced to 1/4 by the data reuse
scheme. Thus, the proposed method reduces the amount of
data fetches to 1/140 in total. CUDA allows us to increase the
ratio of computation to memory access in order to overcome
the bandwidth issue appeared in traditional OpenGL-based
GPGPU applications.

Finally, we investigate the effectiveness of our data reuse
scheme. We develop a naive scalar kernel that does not
use the data reuse scheme. Table V shows the performance
for query length n = 255. Our data reuse scheme reduces
the GPU time by 33% and improves the floating point
performance by 50%. In contrast, the scheme decreases the
effective bandwidth by 62%. However, this is not a critical
problem because the performance bottleneck has already
moved from the memory bandwidth to the instruction issue
rate, as we mentioned earlier. In fact, the naive kernel is
three times faster than the OpenGL-based method though
its effective bandwidth is merely 10% of the OpenGL-
based method. Due to the computation demanding nature,
we will obtain higher performance by applying optimization
techniques to computation.

VII. CONCLUSION

We have presented a design and implementation of the
SW algorithm on the CUDA-compatible GPU. Our method
differs from the prior CUDA-based method [6] in terms of
utilizing the full memory resources, such as shared mem-
ory and constant memory. It also reduces the number of
instructions by applying a data reuse technique to query and
database sequences.

The experimental results show that the proposed method
achieves a peak performance of 5.65 GCUPS using a
GeForce 8800 GTX card. This performance is equivalent
to a 3.1-fold speedup over the prior CUDA-based method
and a 6.4-fold speedup over an OpenGL-based method [9].
We also show that the performance of the CUDA-based
method is limited by the instruction issue rate while that
of the OpenGL-based method is limited by the memory
bandwidth. Thus, the performance bottleneck varies depend-
ing on the underlying programming model. CUDA is useful
to overcome the bandwidth problem appeared in traditional
OpenGL-based GPGPU applications if we fully use the
memory resources provided by CUDA.

One future work is to extend our implementation to deal
with longer queries with a length of more than 2048. We are
also planning to enhance the implementation by supporting
affine gap penalties.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their
valuable comments.

REFERENCES

[1] T. F. Smith and M. S. Waterman, “Identification of common molecular
subsequences,” J. Molecular Biology, vol. 147, pp. 195–197, 1981.

[2] A. Bairoch and R. Apweiler, “The SWISS-PROT protein sequence data
bank and its supplement TrEMBL,” Nucleic Acids Research, vol. 25,
no. 1, pp. 31–36, Jan. 1997.

[3] D. A. Benson, I. Karsch-Mizrachi, D. J. Lipman, J. Ostell, B. A. Rapp,
and D. L. Wheeler, “GenBank,” Nucleic Acids Research, vol. 28, no. 1,
pp. 15–18, Jan. 2000.

[4] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman,
“Basic local alignment search tool,” J. Molecular Biology, vol. 215,
no. 3, pp. 403–410, Oct. 1990.

[5] W. R. Pearson, “Searching protein sequence libraries: Comparison
of the sensitivity and selectivity of the Smith-Waterman and FASTA
algorithms,” Genomics, vol. 11, no. 3, pp. 635–650, Nov. 1991.

[6] S. A. Manavski and G. Valle, “CUDA compatible GPU cards as effi-
cient hardware accelerators for Smith-Waterman sequence alignment,”
BMC Bioinformatics, vol. 9, no. S10, Mar. 2008, 9 pages.

[7] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and J. C.
Phillips, “GPU computing,” Proceedings of the IEEE, vol. 96, no. 5,
pp. 879–899, May 2008.

[8] nVIDIA Corporation, “CUDA Programming Guide Version 1.1,”
Nov. 2007. [Online]. Available: http://developer.nvidia.com/cuda/

[9] W. Liu, B. Schmidt, G. Voss, and W. Müller-Wittig, “Streaming
algorithms for biological sequence alignment on GPUs,” IEEE Trans.
Parallel and Distributed Systems, vol. 18, no. 9, pp. 1270–1281, Sep.
2007.

[10] D. Shreiner, M. Woo, J. Neider, and T. Davis, OpenGL Programming
Guide, 5th ed. Reading, MA: Addison-Wesley, Aug. 2005.

[11] M. C. Schatz, C. Trapnell, A. L. Delcher, and A. Varshney, “High-
throughput sequence alignment using graphics processing units,” BMC
Bioinformatics, vol. 8, no. 474, Dec. 2007, 10 pages.

[12] M. Farrar, “Striped Smith-Waterman speeds database searches six
times over other SIMD implementations,” Bioinformatics, vol. 23,
no. 2, pp. 156–161, Jan. 2007.

[13] P. Zhang, G. Tan, and G. R. Gao, “Implementation of the Smith-
Waterman algorithm on a reconfigurable supercomputing platform,”
in Proc. 1st Workshop High-performance reconfigurable computing
technology and applications (HPRCTA’06), Nov. 2007, pp. 39–48.

[14] I. T. Li, W. Shum, and K. Truong, “160-fold acceleration of the Smith-
Waterman algorithm using a field programmable gate array (FPGA),”
BMC Bioinformatics, vol. 8, no. 185, Jun. 2007, 7 pages.

[15] W. R. Mark, R. S. Glanville, K. Akeley, and M. J. Kilgard, “Cg:
A system for programming graphics hardware in a C-like language,”
ACM Trans. Graphics, vol. 22, no. 3, pp. 896–897, Jul. 2003.

