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Parallel Adaptive Estimation of Hip Range of Motion for
Total Hip Replacement Surgery∗
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SUMMARY This paper presents the design and implementation of a
hip range of motion (ROM) estimation method that is capable of fine-
grained estimation during total hip replacement (THR) surgery. Our
method is based on two acceleration strategies: (1) adaptive mesh refine-
ment (AMR) for complexity reduction and (2) parallelization for further
acceleration. On the assumption that the hip ROM is a single closed region,
the AMR strategy reduces the complexity for N × N × N stance configura-
tions from O(N3) to O(ND), where 2 ≤ D ≤ 3 and D is a data-dependent
value that can be approximated by 2 in most cases. The parallelization
strategy employs the master-worker paradigm with multiple task queues,
reducing synchronization between processors with load balancing. The ex-
perimental results indicate that the implementation on a cluster of 64 PCs
completes estimation of 360 × 360 × 180 stance configurations in 20 sec-
onds, playing a key role in selecting and aligning the optimal combination
of artificial joint components during THR surgery.
key words: range of motion estimation, adaptive mesh refinement, cluster
computing, medical image processing, computer assisted surgery

1. Introduction

Total hip replacement (THR) [1], [2] is a surgical procedure
that relieves patients of hip pain and removes their difficulty
in walking by replacing the hip joint with an artificial joint.
The key issue in this surgery is to select and align the op-
timal combination of artificial joint components: the cup,
head, neck, and stem components as illustrated in Fig. 1 (a).
These optimal selection and alignment are important for
both the surgeon and patient because either inappropriate
or malpositioned components increase the risk of clinical
problems such as dislocation, wear, and loosening [2], [3].

In order to assist the surgeon in finding the best com-
bination and placement of joint components, range of mo-
tion (ROM) estimation systems [3], [4] have been developed
in the past. Earlier systems are useful in developing pre-
operative surgical plans because they present the limitation
of hip movement on three-dimensional (3-D) polygonal sur-
face models reconstructed from patients’ computed tomog-
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Fig. 1 (a) Components of artificial joints and (b) representation of hip
joint motion.

raphy (CT) images. However, the preoperative plans may
need to be changed by unexpected conditions that reveal
during surgery. For example, if the bone tissue around the
preoperatively planned position is known to be fragile, an-
other position must be selected according to intraoperative
circumstances. Thus, intraoperative estimation is essential
to overcome such unexpected conditions.

One issue to develop intraoperative estimation systems
is a large amount of computation due to collision detections
(CDs) required for ROM estimation. For example, an earlier
system [5] on a Sun Ultra 30 running at 300 MHz takes 0.05
seconds to detect a collision for a stance configuration, so
that it takes approximately 13 days to compute a 3-D ROM
with 360 × 180 × 360 = 23,328,000 configurations: 360◦,
180◦, and 360◦ for yaw (φ), pitch (θ), and role (ψ) angles,
respectively, as illustrated in Fig. 1 (b). Therefore, to com-
plete an estimation job during surgery, earlier systems need
to degrade the quality of estimations by limiting the area of
estimation [3] or by reducing the number of stance configu-
rations [6].

In contrast to the coarse-grained estimation mentioned
above, the key contribution of this paper is to provide fine-
grained estimation during surgery. To achieve this, we have
developed a fast estimation method based on two key strate-
gies: (1) adaptive mesh refinement (AMR) for complex-
ity reduction and (2) parallelization for further acceleration.
The analytical results show that the AMR strategy, which
assumes that the hip ROM is a single closed region, reduces
the time complexity for most clinical datasets. Furthermore,
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the experimental results indicate that the combination of the
two strategies is 11 times faster than the prior parallelization
strategy [6] that samples stance configurations by a uniform
mesh instead of an adaptive mesh.

The remainder of the paper is organized as follows.
Section 2 gives an overview of ROM estimation and CD al-
gorithms. Section 3 presents the design and implementation
of our estimation method. Section 4 gives analytical results
using fractal theory. Section 5 shows some experimental re-
sults obtained on a cluster system [7]. Section 6 introduces
some related works. Finally, Sect. 7 concludes the paper.

2. Background

2.1 Range of Motion (ROM) Estimation

To describe the details of ROM estimation, we first show a
brief representation of hip joint motion described in [3].

Let Mp f denote the transformation from the pelvis co-
ordinate system (pelvis-CS) to the femur coordinate system
(femur-CS). As illustrated in Fig. 1 (b), the hip joint motion
is given by:

Mp f = TpcTcsRcsTs f , (1)

where Tpc is a 4 × 4 transformation matrix representing the
orientation of the cup in the pelvis-CS, Tcs is a fixed trans-
formation matrix determined by the selected head and neck
components, Rcs is a variable transformation matrix con-
strained to the rotational motion, and Ts f is a transforma-
tion matrix representing the reverse orientation of the stem
in the femur-CS. Both Tpc and Ts f are determined by one of
the following two methodologies. For preoperative surgical
planning, the medical doctor determines them by experience
using visual guides, as shown in Fig. 1 (b). On the other
hand, for intraoperative assistance, optical 3-D position sen-
sors give the actual values of Tpc and Ts f by measuring im-
planted components. Thus, intraoperative estimation based
on measured Tpc and Ts f is required to obtain exact ROMs.

Given Tpc, Tcs, and Ts f , the safe ROM is defined as a
set of rotation transformation matrices, S, such that for all
Rcs ∈ S, Rcs avoids any implant-implant, bone-implant, and
bone-bone impingements. Thus, the problem of ROM esti-
mation can be resolved by checking collisions among these
objects with varying stance configurations. Figure 2 shows
an example of the safe ROM presenting two features as fol-
lows:

• a closed line shapes the boundary between inside and
outside the ROM;
• the safe ROM does not always include the origin.

Therefore, ROM estimation is a search problem that lo-
cates the boundary of a closed region in 3-D space. Since
Rcs is defined in 3-D space, ROM estimation is a compute-
intensive application. In the following, we represent Rcs by
the Euler angles, (φ, θ, ψ) (0◦ ≤ φ < 360◦, 0◦ ≤ θ < 180◦,
−180◦ ≤ ψ < 180◦), as shown in Fig. 1 (b).

Figure 3 shows how prior methods [3], [4], [6] compute

(a) (b)

Fig. 2 (a) A 3-D ROM and (b) its slice, where ψ = 30◦ , given in polar
coordinates. The entire region in the slice is separated into two pieces by a
closed line. An enclosed region represents the safe ROM while the outside
region represents the out of the ROM.

Fig. 3 (a) The ROM S in continuous space is estimated using a uniform
mesh of sampled stance configurations in discrete space. (b) Then, it is
approximated by a discrete region SD that covers all collision-free config-
urations.

S. To estimate S, these methods sample every stance con-
figuration (φ, θ, ψ) at uniform intervals, and then investigate
each configuration whether it has impingements. After this,
they approximate S by a discrete region SD that covers all
collision-free stance configurations. Therefore, the amount
of computation increases with the number of stance config-
urations. Furthermore, it depends on the complexity of the
CD algorithm employed for each stance configuration.

2.2 Collision Detection (CD)

The basic problem of CD between two objects is to deter-
mine whether or not they geometrically overlap each other.
For polygonal surface models, where a set of planar poly-
gons constructs an object, this problem can be resolved into
the detection of overlaps between polygons. A naive ap-
proach is to test all pairs of polygons. However, this is not
efficient for our case, because our target objects are precisely
modeled using many polygons. Therefore, some methods
are required to approximate objects by a simple shape that
circumscribes an object.

Thus, efficient CD algorithms usually approximate an
object by a hierarchy of bounding volumes (BVs) such as a
tree of oriented bounding boxes (OBBs) [8], that of spheres
[9], and that of discrete orientation polytopes (k-DOPs) [10].
Such algorithms perform CDs between BVs instead of ob-
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Fig. 4 ROM estimation algorithm based on adaptive mesh refinement
strategy. Pk represents a set of collision-free points obtained after the k-
th level estimation.

jects in order to immediately stop the test if the objects
are not apparently located in close proximity. Otherwise,
namely if the BVs have overlaps due to closely located ob-
jects, the algorithms move up the hierarchy of BVs to per-
form more exact CDs using tighter approximation. Thus,
efficient CD algorithms prune overlap tests for some pairs
of polygons by using geometric approximation of objects.

Prior ROM estimation systems [3]–[6] use the V-
COLLIDE library [11] for CDs, which is based on a hier-
archy of OBBs. This hierarchy provides efficient pruning
for objects composed of many polygons, such as bone sur-
faces, because it realizes tight approximation of such ob-
jects. Our estimation system also uses the V-COLLIDE li-
brary for CDs.

3. Fast ROM Estimation

This section describes the AMR strategy and the paralleliza-
tion strategy used in our method. These key strategies
are layered on top of the V-COLLIDE library. The AMR
strategy aims at minimizing calls of V-COLLIDE functions
while the parallelization strategy focuses on increasing the
throughput of our cluster system.

3.1 Adaptive Mesh Refinement (AMR)

The key idea of AMR is to investigate in detail the stance
configurations only close to the boundary of the ROM. To
realize such non-uniform refinement, our estimation algo-
rithm employs two techniques as follows (see also Fig. 4).
Hierarchical structure of meshes. The AMR strategy em-

Fig. 5 Process of adaptive mesh refinement. (a) For all configurations
sampled at the k-th level, the algorithm checks collisions. (b) Then, it de-
termines the status of each stance configuration according to Eq. (2). In
this example, configuration p1 is marked as “passsive” because p1 and its
surrounding configurations have the same CD result (impingements, in this
case). In contrast, p2 is an active configuration because two of its neighbors
have no impingement while p2 has impingements. (c) The (k + 1)-th mesh
is generated only around active configurations.

ploys a hierarchical structure of meshes to sample stance
configurations. A stance configuration here corresponds to
a lattice point of a mesh. At the beginning of the estimation,
the algorithm generates the initial uniform mesh G1 with the
coarsest sampling intervals i1. After the k-th level estima-
tion, where k ≥ 1, it generates the refined mesh Gk+1 with
half intervals ik+1 = ik/2 only around configurations poten-
tially close to the boundary of the ROM. Thus, refinements
around the remaining configurations are omitted in order to
reduce the amount of computation. These refinements are
repeated until reaching the finest level F.
Status control of each stance configuration. Figure 5
shows the process of selecting configurations close to the
boundary. Our algorithm associates each configuration with
a status, Cφ,θ,ψ ∈ {active, passive}. “Active” here means that
the configuration is potentially close to the boundary while
“passive” means that the configuration is apparently far from
the boundary. These decisions are based on the assumption
that the hip ROM is a single closed region. Under this as-
sumption, a stance configuration surrounded by neighbors
with impingements (or no impingements) also has impinge-
ments (or no impingements, respectively). Therefore, such
a surrounded configuration is marked as “passive” in order
to avoid further mesh refinement around the configuration.
In summary, the status of each stance configuration is given
by:

Cφ,θ,ψ =



passive, if ∀p, q, r ∈ {−ik, 0, ik}
[(φ+p, θ+q, ψ+r) ∈ Pk]
∨∀p, q, r ∈ {−ik, 0, ik}
[(φ+p, θ+q, ψ+r) � Pk]

active, otherwise.

(2)

where Pk represents a set of collision-free configurations
computed at the k-th level estimation.

If the k-th level mesh does not contain all of the config-
urations (φ+p, θ+q, ψ+r) in Eq. (2), the status Cφ,θ,ψ is decided
according to the match or mismatch of the CD results only
for sampled configurations.
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Note that our adaptive algorithm does not always give
the same results as non-adaptive algorithms. This difference
is due to the assumption mentioned above. For example,
if the initial sampling intervals are too large, our algorithm
may fail to detect a small ROM hidden entirely in a large cell
of the coarse mesh. However, we think that we can easily
avoid such inappropriate initial intervals, because clinical
datasets allow us to roughly estimate the regional size of the
ROM according to clinical statistics.

Another solution to detect such small cells is to em-
ploy a classical trick known in the field of computational
geometry [12]. This trick uses dilated objects to check pos-
sible collisions for continuous range of configurations. A
dilated object is a trajectory of the original objects rotating
from a sampled configuration to a next sampled configura-
tion. If the dilated object is free from collisions with the
other object, the trick ensures that no impingement occurs
at any configurations between two sampled configurations.
Thus, the trick reveals smaller ROMs, allowing our adap-
tive algorithm to produce the same results as non-adaptive
algorithms.

In addition to the complexity reduction, our adap-
tive algorithm has another advantage compared with non-
adaptive algorithms. Since our algorithm refines the mesh as
it moves up the hierarchy, it enables progressive visualiza-
tion of the safe ROM. Therefore, an outline of the safe ROM
is roughly visible in the early phase of estimation, allowing
surgeons to immediately terminate the ongoing estimation
job, if the outline is known to be apparently an unoptimal
result.

3.2 Parallelization

In our algorithm, a CD task for stance configuration
(φ′, θ′, ψ′) is dependent on that for another configuration
(φ, θ, ψ) if and only if status Cφ,θ,ψ determines whether to
sample (φ′, θ′, ψ′) or not at mesh refinement. In other words,
any two configurations without causal relations between
them can be processed in parallel. Therefore, our strategy
exploits task parallelism in ROM estimation. In the follow-
ing discussion, a task corresponds to CDs for a set of config-
urations in the same level or in different levels but without
causal relations among the configurations.

In order to exploit this parallelism, our strategy em-
ploys the master-worker (MW) paradigm, where computing
nodes are classified into two groups: a master and the re-
maining workers. Figure 6 shows an overview of our par-
allelization strategy. While the workers check collisions for
tasks assigned from the master, the master manages estima-
tion results, namely the safe ROM, and updates the status
of each configuration. According to this status, the mas-
ter determines which region need to be further refined, and
then samples stance configurations for the next level. These
newly sampled configurations are enqueued as tasks to a
queue prepared for each estimation level. Tasks are de-
queued when assigning them to workers. Since idle workers
are selected for this assignment, the MW paradigm is capa-

Fig. 6 Adaptive ROM estimation based on the master-worker paradigm.
Given P computing nodes, P−1 workers check collisions for tasks assigned
from a master while the master manages estimation results and task queues
for each estimation level. The master is also responsible for mesh refine-
ment. In this example, eight configurations around an active configuration
are newly sampled and enqueued to the corresponding queue.

ble of dynamic load balancing among workers.
Note here that our parallelization strategy prevents syn-

chronization among workers when advancing the estimation
level. If we implement the MW paradigm in a naive way in
which the master needs all results of the current level before
advancing to the next level, idle workers have to wait for the
master to compute the status of returned configurations and
to sample new configurations for the next level (see lines
11–17 in Fig. 4).

To eliminate this synchronization, our strategy uses an
asynchronous mechanism in which the master determines
the status and samples stance configurations immediately
after receiving CD results from the workers. This asyn-
chronous behavior achieves higher throughput because it
minimizes waiting time at the workers. However, the mas-
ter must simultaneously manage tasks sampled from differ-
ent levels. Such tasks should be processed from the coarse-
grained level because tasks at coarser levels can generate
many independent tasks after refinement. Therefore, as
shown in Fig. 6, the master has multiple queues with pri-
orities to enable this coarse-to-fine processing.

The load-balancing nature of the MW paradigm is im-
portant to achieve higher speedup, because different CD
tasks have different computational loads in our estimation
algorithm. This difference is due to the V-COLLIDE library,
which employs BVs to dynamically prune overlap tests, de-
pending on the position and orientation of objects. Actually,
the execution time per configuration ranges from 0.1 to 10
milliseconds.

Generally, we should carefully select the grain size of
tasks in order to achieve higher speedup for MW appli-
cations. If tasks are excessively fine-grained, the workers
always wait for the master, which suffers in frequent task
assignments. In contrast, if tasks are excessively coarse-
grained, the MW paradigm loses the load-balancing effects.
Thus, an appropriate grain size is necessary to obtain the
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load-balancing effects for higher speedup.
In our current system, the grain size of a task, namely

the number of configurations that compose a task, is experi-
mentally determined according to the entire execution time.
We currently use the same grain size for all estimation lev-
els. Therefore, our grain size will not be optimal for each
of estimation levels. However, according to experimental
results, we think that the uniform solution is reasonable in
terms of efforts to get satisfactory performance.

4. Analytical Results

To theoretically evaluate our adaptive algorithm, we now
analyze its time complexity and compare it with a non-
adaptive algorithm that employs a uniform mesh. For a
measure of the time complexity, we use the number of
sampled configurations, L, namely the total number of (V-
COLLIDE) function calls required for CDs. We assume that
the computational cost of mesh generation is small enough
to ignore, as compared with that of CDs. The parallel perfor-
mance of our method is beyond the scope of this evaluation,
and shown in the next section.

The following analysis shows that, given N × N × N
stance configurations, our algorithm performs O(ND) CDs
instead of O(N3) CDs, where 2 ≤ D ≤ 3 and D is a data-
dependent value that can be approximated by 2 in most
cases. The key idea in the analysis is to use fractal dimen-
sion [13], which characterizes how densely a geometric ob-
ject occupies the space in which it lies. We use this geo-
metric characteristic to explain how finely the adaptive mesh
samples configurations in space, and thus L can be analyzed.

4.1 Complexity Analysis

Let Lk be the number of sampled configurations at the k-
th level, where k ≥ 1. Then, the total number of sampled
configurations is given by L =

∑F
k=1 Lk. The main result of

the analysis is as follows.

Theorem 1. Let ∂S be the boundary of the ROM S in con-
tinuous space. Suppose that S is a single closed region and
∂S has fractal dimension D [13]. Then, the adaptive mesh
generated by our algorithm has L = O(ND) lattice points.

To prove Theorem 1, we introduce three lemmas and a
definition taken from fractal theory [13].

Lemma 1. Let Ak be the number of active points at the k-th
level estimation, where k ≥ 1. Then, for all k ≥ 1, the num-
ber Lk+1 of points sampled newly around the active points
for the next (k+1)-th level estimation is bounded as follows:

(23 − 1)Ak ≤ Lk+1 ≤ (33 − 1)Ak. (3)

Proof. Since our algorithm uses 3-D meshes, any active
point generates 33 − 1 neighbors after mesh refinement. The
worst case occurs when active points are sparsely populated,
so that they do not have common neighbors. In this case,

every active point generates 33 − 1 different neighbors af-
ter mesh refinement. Therefore, Lk+1 ≤ (33 − 1)Ak. On the
other hand, the lower bound occurs when active points are
located contiguously in the mesh, so that some of 33 − 1
neighbors are identical. In this case, every active point
has one common neighbor for each of dimensions. Thus,
((3 − 1)3 − 1)Ak ≤ Lk+1. �

Lemma 2. Let Bk be the number of cubic cells of the mesh
Gk that intersect the boundary ∂S. Then, for all k ≥ 1,

Ak ≤ 23Bk. (4)

Proof. According to Eq. (2), any active point p at the k-th
level has at least one neighbor q with a different CD result.
That is, p and q (or q and p) are collision-free and collisional
points. Therefore, ∂S exists between them. Furthermore,
since p and q are neighboring points, for any active point p,
there exists at least one cubic cell that intersects ∂S. The
number of such cubic cells is at most 23, because any point
of the 3-D mesh is shared with 23 cubic cells. �

Definition 1. Let X be a non-empty bounded subset of
d-dimensional space and let Bδ(X) be the number of d-
dimensional mesh cubes of side length δ that intersect X.
Let D(X) denote the fractal dimension of X. D(X) is the
logarithmic rate at which Bδ(X) increases as δ → 0. Thus,
D(X) satisfies

Bδ(X) ∝ δ−D(X), (5)

where ∝ denotes a proportional relation [13].

Lemma 3. If the boundary ∂S have fractal dimension D,
then Bk ∝ ik−D, for all k ≥ 1.

Proof. Due to the assumption that S is a single closed re-
gion, the k-th level mesh Gk includes all cells that intersect
the boundary ∂S. Furthermore, Gk consists of cells with the
side length ik, so that Bk corresponds to Bik(∂S) in Defini-
tion 1. Thus, substituting ∂S for X in Definition 1 gives the
proof. �

We now prove Theorem 1.

Proof of Theorem 1. According to Lemma 1, 2, and 3, we
have

Lk = O(Bk−1) = O(ik−1
−D), (6)

where k ≥ 2. On the other hand, L1 is a constant because
the algorithm uses a uniform mesh at the first level. Thus,
we can claim that

L = L1 +

F∑

k=2

Lk

= O(1) +
F∑

k=2

O(ik−1
−D)

= O(1) + O(iF
−D) = O(ND). (7)

�
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Next, we analyze the fractal dimension D of the bound-
ary ∂S.

Theorem 2. For any boundary ∂S of three-dimensional
ROM S, its fractal dimension D is bounded as follows:

2 ≤ D ≤ 3. (8)

To prove Theorem 2, we use the following two proper-
ties [13].

Property 1. For two non-empty bounded subsets of d-
dimensional space, X and Y, if X ⊂ Y then D(X) ≤ D(Y).

Property 2. If X is a smooth (or continuously differen-
tiable) m-dimensional submanifold (or m-dimensional sur-
face) of d-dimensional space, where d ≥ m, then D(X) = m.

Proof of Theorem 2. A cubeA larger than S can cover ∂S:
∂S ⊂ A. Furthermore, ∂S consists of small smooth surfaces
B: B ⊂ ∂S. On the other hand, Property 2 shows that a
cube A and a smooth surface B have fractal dimension 3
and 2, respectively: D(A) = 3 and D(B) = 2. Therefore,
Property 1 completes the proof. �

4.2 Discussion for Clinical Datasets

We show that the fractal dimension D of the boundary of the
safe ROM can be approximated by 2 for clinical datasets.

As shown in Fig. 7, this is experimentally verified by
measuring D for several safe ROMs. The values in Fig. 7
are obtained by applying the box-counting method [13] to
each of the estimated safe ROMs. The box-counting method
here is a standard method for computing fractal dimensions
of geometric shapes. We think that this approximation is
applicable to most clinical datasets, because boundaries of
hip joint ROMs can be assumed as approximately smooth
surfaces due to the following reason.

The boundary ∂S represents the set of the configu-
rations where objects are just touching each other. The
objects, the pelvis, femur, and implants in our case, have
smooth surfaces. Then, for any fixed yaw angle φ, the
just-touching configurations (φ, θ, ψ) should form a smooth
curve in the θ-ψ plane due to the smoothness of surfaces.
Similarly, the just-touching configurations should form a
smooth curve in the ψ-φ and φ-θ planes. Therefore, the
boundary ∂S should be a smooth surface in configuration
space. According to Property 2, such a surface has dimen-
sion D = 2. Thus, we think that the complexity of our algo-
rithm is O(N2) for most medical datasets.

5. Experimental Results

In this section, we evaluate the performance of our adaptive
method by comparing it with a non-adaptive method [6] on

Fig. 7 Fractal dimensions measured for the boundary of the safe ROM.
Three different datasets are investigated with seven different positions of
artificial joint components.

Table 1 Execution time and its breakdown for fine-grained ROM estima-
tion with 360 × 180 × 360 stance configurations. UM denotes non-adaptive
estimation using a uniform mesh.

Sequential
Parallel on 128 CPUs

Breakdown Ethernet Myrinet
UM AMR UM AMR UM AMR

V-COLLIDE Initialization 6
1st level, i1 = 16◦ — 6 — 0.1 — 0.1
2nd level, i2 = 8◦ — 10 — 0.1 — 0.1
3rd level, i3 = 4◦ — 43 — 0.8 — 0.5
4th level, i4 = 2◦ — 202 — 3.1 — 2.3
5th level, i5 = 1◦ 16,318 996 191 16.8 135 10.7
Total time (second) 16,324 1,263 197 26.8 141 19.6

a cluster of PCs. The cluster consists of 64 symmetric mul-
tiprocessor (SMP) nodes, each with two Pentium III CPUs
running at 1 GHz clock speed. Computing nodes are inter-
connected by Myrinet [14] and Fast Ethernet, which provide
bandwidth of 2 Gb/s and 100 Mb/s, respectively.

We have implemented the method using the C++ lan-
guage and the MPICH-SCore library [15], a highly portable,
efficient implementation of the Message Passing Interface
(MPI) standard [16]. Note here that the MPICH-Score
library performs intra-node MPI communication through
shared-memory.

The datasets of the pelvis and femur were composed
of 116,270 and 30,821 polygons, respectively. See [6] for
the detailed explanation on how we generated them. The
estimation hierarchy of our adaptive method was composed
of five levels (F = 5) ranging from i1 = 16◦ to i5 = 1◦. As
well as the adaptive method, the non-adaptive method is par-
allelized using the MW paradigm to realize load-balancing
among workers [6]. As we mentioned in Section 3.2, the
grain size of a task was experimentally selected to yield the
highest performance: 50 and 10,000 configurations per task
for the adaptive and non-adaptive methods, respectively.

Table 1 shows the execution time for fine-grained ROM
estimation with 360 × 180 × 360 stance configurations. As
compared with the parallel non-adaptive method, the paral-
lel adaptive method reduces the execution time on Myrinet
from 141 to 19.6 seconds and that on Ethernet from 197 to
26.8 seconds. These timing results, less than a half minute,
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(a) (b)

Fig. 8 (a) A slice of computed safe ROM, where ψ = 0◦, and (b) stance
configurations sampled by the adaptive method, where sampled configura-
tions are shown as lattice points of the mesh.

are acceptable for intraoperative surgical planning. Since
the sequential adaptive method takes 1263 seconds, paral-
lelization, as well as AMR, is a key strategy for intraopera-
tive assistances.

Figure 8 shows stance configurations sampled by the
adaptive and non-adaptive methods, presenting how the
adaptive method reduces the amount of computation. We
can see that the adaptive method investigates in detail the
stance configurations only around the boundary of the ROM.
This reduces the number of investigated configurations from
23,328,000 to 1,594,816 configurations, and thereby the
speedup to the non-adaptive method reaches a factor of
12.9 (= 16,324/1263) on a single CPU machine.

In addition to the timing benefit, the adaptive method
allows progressive visualization, as we mentioned in Sec-
tion 3.1. For example, the method roughly outlined the safe
ROM using sampling intervals of 16◦, 8◦, and 4◦ after 6.1,
6.1, and 6.6 seconds on Myrinet, respectively. These re-
sults mean that progressive visualization is not smoothly
presented to users. This is due to the initialization of V-
COLLIDE, which takes 6 seconds to construct data struc-
ture from the input polygons. Thus, although V-COLLIDE
requires pre-processing time for rapid CDs, we think that
progressive visualization is necessary for intraoperative es-
timation to report the progress of ROM estimation to sur-
geons.

To evaluate the scalability of our method, we mea-
sured the speedup on different numbers of CPUs (Fig. 9).
Here, the speedup is the ratio of the sequential execution
time to the parallel execution time. While the speedup
of non-adaptive method linearly increases, that of adaptive
method saturates as the number of CPUs increases. This is
mainly due to the less parallelism in the adaptive method
as compared with the non-adaptive method. That is, al-
though the adaptive method reduces the amount of compu-
tation, it loses the complete independence of tasks that the
non-adaptive method has. Furthermore, the adaptive method
needs the master to compute the status for stance configura-
tions. Thus, less parallelism and additional work decrease
the speedup of the adaptive method.

Note here that although the non-adaptive method
provides higher speedup than the adaptive method, it

(a)

(b)

Fig. 9 Speedups of (a) adaptive method and (b) non-adaptive method.

takes approximately seven times longer execution time on
128 CPUs. Therefore, speedup is not always a good mea-
sure for the evaluation of parallel methods.

Next, we show the effect of the asynchronous mecha-
nism presented in Sect. 3.2. Figure 10 shows the behaviors
of the master and workers in timeline. There is apparently
long waiting time in the synchronous implementation. As
we mentioned in Section 3.2, this waiting time is due to the
master, which samples configurations before increasing the
estimation level. In contrast, the waiting time is eliminated
by our asynchronous mechanism.

Actually, as compared with a synchronous implemen-
tation, our asynchronous implementation reduces the execu-
tion time from 21.3 to 19.4 seconds and from 53.9 to 26.8
seconds on Myrinet and on Ethernet, respectively. Thus, our
mechanism demonstrates more reduction on high-latency,
low-bandwidth network. This is due to the communication
overhead incurred at the master. That is, relatively larger
overhead makes it easier for the master to quickly assign
tasks to workers, because the master has more time to com-
pute the status of returned configurations and to sample new
configurations around them. Thus, eliminating the waiting
time is necessary to obtain higher efficiency, especially for
high-latency, low-bandwidth networks.

Finally, we compare the safe ROMs estimated by our
adaptive algorithm and the non-adaptive algorithm. As we
mentioned in Section 3.1, two algorithms may produce dif-
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(a)

(b)

Fig. 10 Timeline views of (a) asynchronous implementation and (b) syn-
chronous implementation, showing the process behavior until the 4th level
on 16 PCs, each with 2 CPUs. Computation part includes initialization,
task processing and status control. Communication part corresponds to
data transfer and waiting time for incoming data. Worker 1 finishes V-
COLLIDE initialization earlier than others, because it runs on the same PC
as the master, which does not need to initialize V-COLLIDE. Other work-
ers take relatively longer time for initialization, mainly due to I/O and bus
contention.

ferent results if the initial sampling intervals are excessively
large. For the datasets used in the experiments, we obtain
the same ROMs if the initial sampling intervals are smaller
than 16◦. Otherwise, we have different ROMs.

In the latter cases, the adaptive algorithm fails to re-
fine the meshes around configurations close to the boundary.
This failure is due to the same reason mentioned in Sec-
tion 3.1, that is, the same situation occurs at each estimation
level. If the initial sampling intervals are larger than 32◦, the
algorithm decides not to refine the mesh around the raised
portions of the boundary, such as the lower part of the ROM
in Fig. 8 (a), that surrounded by collision-free configurations
sampled by the coarse mesh. In contrast, the algorithm suc-
cessfully refines the mesh around the raised portions if the
initial intervals are smaller than 16◦. Thus, the smaller in-
tervals can avoid the failure of the adaptive algorithm.

6. Related Work

Earlier systems [17]–[19] compute the safe ROM in O(1)
time, but they do not take account of bone-implant and

bone-bone impingements. These systems assume that the
hip movement is limited only by implant-implant impinge-
ments, such as cup-neck impingements. Under this assump-
tion, the limitation of joint movement can be easily esti-
mated by solving simple formulas, because cups and necks
have simple shapes such as spheres and cylinders.

To tackle more practical cases, recent systems [3], [4]
estimate more accurate ROMs by taking account of all of
the impingements mentioned above. However, their detailed
approach involves a large amount of computation due to the
high cost of CDs between complex-shaped bones. This is
a critical problem for intraoperative estimation, where the
estimation must be rapidly done in a half minute. There-
fore, such systems are required to reduce the computational
amount by degrading the sampling intervals or the dimen-
sion of the ROM.

Kawasaki et al. [6] have developed a cluster system
that parallelizes Sato’s system [3]. However, their cluster
system limits the number of stance configurations because
their non-adaptive method is not fast enough for intraoper-
ative estimation. To the best of our knowledge, there is no
work achieving complexity reduction for ROM estimation.

In the research area of robotics, there are many works
[20]–[22] dealing with a problem similar to the estimation
of hip joint ROM. Their problem is to find collision-free
robot configurations, such as angular displacements of ma-
nipulator joints, which keep the robot free from collisions
with stationary obstacles. Solving this problem is essential
to plan a robot motion such that the robot could move from
a start to a destination without collisions.

The robotics methods are applicable to our problem by
assuming that a pelvis is an obstacle and a femur is a robot
manipulator with three degrees of freedom (DOF). How-
ever, they are not optimized well for our medical problems
where objects have complex shapes and obstacles are lim-
ited by a single object. In contrast, the robotics methods
are optimized to deal with moving a simple-shaped robot
through many simple-shaped obstacles. Even if robots and
obstacles have complex shapes, such methods are allowed
to substitute simple-shaped objects for robots and obstacles,
because exact ROMs are not required for computing the
robot motion path. In contrast, ROM estimation methods
employ a prune-based CD algorithm in order to obtain exact
ROMs in rapid time for such complex problems.

7. Conclusions

We have presented a ROM estimation method that is rapid
enough for assisting the surgeon during THR surgery. Our
method achieves fast estimation based on two strategies: the
AMR strategy where the safe ROM is non-uniformly re-
fined in a coarse-to-fine manner to reduce the computational
complexity; and the parallelization strategy where stance
configurations are investigated in simultaneously and asyn-
chronously to obtain further acceleration.

We have shown that the AMR strategy reduces the time
complexity under the assumption that the ROM is a single
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closed region. Furthermore, the experimental results indi-
cate that the implementation on a cluster of 64 PCs achieves
estimation of 360 × 360 × 180 stance configurations within
a half minute, and thereby plays a key role in selecting and
aligning the optimal combination of artificial joint compo-
nents during surgery.

In future work, we will parallelize V-COLLIDE initial-
ization in order to achieve higher speedup on many CPUs.
We are also planning to verify the performance for various
clinical datasets.
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