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Abstract: Image registration is a technique usually used for aligning two 
different images taken at different times and/or from different viewing points. 
A key challenge for medical image registration is to minimise computation 
time with a small alignment error in order to realise computer-assisted surgery. 
In this paper, we present the design and implementation of a parallel  
two-dimensional/three-dimensional (2-D/3-D) image registration method for 
computer-assisted surgery. Our method exploits data parallelism and 
speculative parallelism, aiming at making computation time short enough to 
carry out registration tasks during surgery. Our experiments show that 
exploiting both parallelisms reduces computation time on a cluster of 64 PCs 
from a few tens of minutes to less than a few tens of seconds, a clinically 
compatible time. 
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1 Introduction 

Image registration (Hajnal et al., 2001) is a technique for finding point correspondences 
between two different images, usually taken at different times, from different viewing 
points, and/or in different modalities. This technique plays an increasingly important role 
in surgery (Gueziec et al., 1998; Joskowicz et al., 1998). For example, registration of 
preoperative images to intraoperative images is essential to perform surgical procedures 
according to a preoperative surgical plan. This is because surgical plans are developed in 
the coordinate system relative to the preoperative data, while the surgical procedure is 
performed in the coordinate system relative to the patient (realworld). In this case, the 
registration technique relates the data coordinate system with the patient coordinate 
system, enabling image-guided or robot-assisted surgery (Gueziec et al., 1998;  
Herring et al., 1998; Weese et al., 1997), which minimises surgical complications and 
provides for better surgical outcomes. 

For this purpose, many researchers have tackled the problem of 2-D/3-D registration 
(Lemieux et al., 1994), which estimates the location and orientation of a 3-D volume with 
respect to the patient coordinate system using one or more 2-D projected images.  
The reasons for aligning a 3-D volume with 2-D images are the limitations of current  
3-D imaging systems, such as helical Computed Tomography (CT) scans, which have 
more spatial information but require more acquisition time and radiation exposure as 
compared to 2-D imaging systems. Due to these limitations, the intraoperative data are 
usually 2-D X-ray fluoroscopy or ultrasound images, whereas the preoperative data are  
3-D CT volumes, motivating us to deal with 2-D/3-D registration. 

One key challenge for 2-D/3-D registration is to develop a fast, accurate, and robust 
algorithm. Prior algorithms can be classified into two groups: feature-based and  
intensity-based approaches. The intensity-based approach has been shown to provide 
more accurate and robust results than the feature-based approach (McLaughlin et al., 
2002; West et al., 1999). The feature-based approach uses geometrical features  
such as contours (Feldmar et al., 1997; Lavallée and Szeliski, 1995) and surfaces 
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(Herring et al., 1998; Maurer et al., 1998). It provides fast alignments but needs us to 
manually find correct contours in the projected 2-D images or to extract precise surfaces 
from the 3-D volume. This intervention is a serious drawback because precise features, 
which are manually selected, are essential to obtain accurate registration results. On the 
other hand, the intensity-based approach (Lemieux et al., 1994; Penny et al., 1998; Weese 
et al., 1997; Zollei et al., 2001) compares the intensity values between the real projected 
2-D image and the Digitally Reconstructed Radiograph (DRR) which is generated from 
the volume. It requires a large amount of computation to iteratively produce DRRs until a 
best match between the real image and the DRR is found. Thus, there is a tradeoff 
between computation time and manual intervention. 

In this paper, we present the design and implementation of a parallel 2-D/3-D 
registration method, aiming at achieving fast, accurate and robust alignments for 
computer-assisted surgery. Our method parallelises an intensity-based algorithm to 
reduce computation time without either degrading the quality of alignment or requiring 
manual intervention. The key contribution of our method is to provide fast and robust 
alignments by means of data-parallel and speculative processing, respectively. We also 
demonstrate that exploiting two parallelisms on our cluster, namely, data and speculative 
parallelism in registration tasks, reduces computation time sufficiently to utilise the 
registration technique during surgery. 

The paper is organised as follows: Section 2 describes the intensity-based registration 
algorithm employed in our parallel method. The design aspects of our method are 
presented in Section 3 with a theoretical performance analysis. Section 4 shows 
experimental results using a cluster of 64 PCs. Section 5 presents related work. Finally, 
Section 6 concludes the paper. 

2 Intensity-based 2-D/3-D registration 

The intensity-based algorithm employed in our method has the following three 
advantages: 

• automated registration by comparing a real projected image and a DRR  
(Lemieux et al., 1994) 

• robust registration using an information-based similarity measure  
(Penny et al., 1998) 

• accurate registration using biplane 2-D images (Li et al., 1994) and Region Of 
Interest (ROI) (Weese et al., 1997). 

In addition to the earlier advantages mentioned above, our method aims at providing fast 
and robust registration by means of data-parallel and speculative processing. 

Before describing each advantage, we first define the 2-D/3-D registration problem. 
To make it easier, we present a definition for a single image rather than biplane images. 
Given a volume V and a real projected image IF (see Figure 1), the 2-D/3-D registration 
technique computes the rigid transformation parameter T that relates the coordinate 
system of the volume V and that of the imaging (patient) environment. Here, the rigid 
transformation is given by T = (TX, TY, TZ, θX, θY, θZ), where the first and last three 
parameters are the translations and rotations of V. 
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Figure 1 Overview of intensity-based 2-D/3-D registration. In this case, it aligns a CT volume of 
a real spine to a fluoroscopy image of the spine 

 

Figure 2 briefly presents the intensity-based algorithm. The algorithm resolves the 
registration problem into an optimisation problem. That is, in order to register the volume 
V to the 2-D image IF, the algorithm optimises a cost function C associated with the 
location and orientation of V, where C represents the similarity measure between the 2-D 
image IF and the DRR ID, which is generated from V. Furthermore, this optimisation is 
performed in a hierarchical manner in order to reduce the amount of computation.  
This hierarchy is controlled by the step size λ of the optimisation. 

Figure 2 Intensity-based 2-D/3-D registration algorithm. The algorithm maximises a similarity 
measure through the use of the steepest descent optimisation. This optimisation is 
performed in a coarse-to-fine manner 
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The algorithm consists of the following four technologies. 

DRR generation 

As illustrated in Figure 1, a ray casting method (Levoy, 1988) generates the DRR ID. 
Image intensity ID(i, j) at point ( i ,  j)  on the DRR ID is computed by accumulating the 
intensities of the voxels that ray r(i, j) penetrates, where r(i, j) represents a ray that 
penetrates point ( i ,  j)  from the rendering source. 

Similarity measure 

We use Gradient Correlation (GC) for our algorithm according to Penny’s experimental 
study (Penny et al., 1998) on six similarity measures. Although they found that pattern 
intensity (Weese et al., 1997) and gradient difference were the most robust measure for 
their registration scenario, these measures require intensity correction (Penny et al., 1998) 
to minimise the difference between the two images IF and ID, because they use a 
difference image created by subtracting ID from IF. In contrast, GC focuses on edge 
information in the images, so it essentially does not require intensity correction to 
minimise the difference. Furthermore, they also show that GC provides a small failure 
rate (5%) for clinical datasets, and it is the most robust measure that assumes no intensity 
correction. Therefore, we use GC as the similarity measure between the two images IF 
and ID. 

( ) ( , ).F DC G I I=T  (1) 

Here, GC G(A, B) between images A and B is given by 

1( , ) , , ,
2

A B A BG A B N N
i i j j

  ∂ ∂ ∂ ∂ = +   ∂ ∂ ∂ ∂      (2) 

where ∂A/∂i and ∂A/∂j (∂B/∂i and ∂B/∂j) are the gradient images of A (B, respectively), 
representing the derivative of the intensity in the horizontal and vertical axes of the 
image, and N(A, B) is Normalised Cross Correlation (NCC) defined over two images A 
and B: 
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where  and A B  are the mean values of the images. 
The gradient images are produced by means of the first derivative of a Gaussian.  

This filter has the advantage that it reduces and smoothes noise in images, improving the 
robustness of alignment. In summary, the intensity values at point (i, j) on the gradient 
images ∂A/∂i and ∂A/∂j are given by convolution with the first derivative Gaussian filters 
FI(i, j) and FJ(i, j): 
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and σ is the standard deviation of the distribution and is proportional to the kernel size, 
namely the size of the neighbourhood on which the filter operates. The remaining 
gradient images ∂B/∂i and ∂B/∂j also can be generated in the same manner. 

Summarising the above description, the algorithm mainly consists of three 
computation phases: 

• DRR generation 

• gradient image generation 

• NCC computation. 

Optimisation 

In order to find the optimal transformation parameter T that maximises the cost function 
C, the algorithm employs the steepest descent optimisation technique (Press et al., 1988) 
during registration process: 

.Cλ ∂= +
∂

T T
T

 (4) 

This optimisation stops if a local optimum has been found. The gradient ∂C/∂T of the 
cost function is estimated by using the finite-difference approximation (Press et al., 
1998). As we mentioned earlier, this optimisation is performed from coarse to fine 
resolution by decreasing the step size λ. Because the transformation T consists of six 
independent parameters, the computation phases (a)–(c) are repeated 13 times to 
approximate the gradient ∂C/∂T at each optimisation step: one repetition for current 
transformation T and 12 repetitions for finite differences T ± λ∆ of each parameter. 

Biplane images and ROI 

Generally, a single projected image is not sufficient for accurate registration in the 3-D 
space, because it essentially is not sensitive enough to estimate the precise position in the 
depth direction. A straightforward solution to this problem is to use biplane images  
(Li et al., 1994). To do this, the algorithm optimises the sum of two GCs, each computed 
from one of the pairs of biplane images and DRRs. 

Furthermore, the algorithm supports ROI specification to minimise computation time 
and improve registration accuracy (Weese et al., 1997). As illustrated in Figure 1, the 
ROI must be specified such that it includes the anatomy to be aligned. Given such a ROI, 
the algorithm is allowed to process only inside the ROI, minimising the amount of 
computation. This ROI specification can be done automatically and quickly by an 
intensity parser (Lorenz et al., 1997). 
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3 Parallelising 2-D/3-D registration 

In this section we present the design and implementation of our parallel method. We then 
show a theoretical performance analysis of our method. 

3.1 Design aspects 

To accelerate the registration process, we can exploit three parallelisms as follows. 

• Speculative parallelism. In the registration algorithm, speculative parallelism can be 
exploited by simultaneously processing the same registration task with different 
initial parameters. This is important to prevent unsuccessful registrations  
(due to local optimums), because the surgery cannot progress until the alignment has 
been correctly achieved. Otherwise, the surgery must be performed without the 
surgical plan. To prevent such undesirable situations, an appropriate transformation 
must be given as the initial parameter T. However, in general, initial parameters are 
experimentally determined according to the surgeon’s experience. Therefore, 
speculative processing contributes to improvement in the robustness of our method. 

• Data parallelism. Exploiting this parallelism accelerates a single registration task.  
It can easily be established by using image parallelism (Molnar et al., 1994), where 
processors take the responsibility for each subtask associated with a small part of the 
2-D image. The details of this workload distribution are presented later in  
Section 3.2. 

• Task parallelism. This parallelism also contributes to the acceleration of a single 
registration task. It exists in the finite-difference approximation, where the 
computation phases (a)–(c) are repeated 13 times. However, this means that the 
speedup derived by this parallelism is limited by a small factor of 13. Furthermore, 
load balancing is probably not easy if it is exploited, because 13 cannot divide the 
number of processors, usually chosen to be a power of two. 

From the above discussion, we have decided to exploit speculative parallelism and data 
parallelism. Exploiting these parallelisms then raises another question to be answered: 
given P processors, how many processors should be used to exploit each parallelism?  
The idea for this issue is to estimate an appropriate number of processors for data-parallel 
processing and then assign the remaining processors to speculative processing.  
The appropriate number is determined by the speedup estimated by the theoretical 
analysis presented later in Section 3.4. 

In addition to the computation phases (a)–(c), Input/Output (I/O) operations also 
might become a performance bottleneck after parallelisation. However, I/O issues are not 
critical in our cluster environment for the following two reasons. Firstly, the largest input 
data, namely the volume V, are the preoperative data. Therefore, it can be distributed to 
processors before surgery, allowing us to assume that processors have loaded it into their 
local memory when registration tasks are submitted. Secondly, the remaining data IF are 
small enough to be broadcast rapidly in our cluster. For example, it takes only about 
119 ms to broadcast a 1024 × 1024 pixel image while the succeeding optimisation 
process takes more than 10s, as presented later. Thus, although the intraoperative image 
IF needs to be broadcast just before starting the registration process, it is not critical for 
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our well-connected computing environment. Therefore, we assume that all processors 
have the entire data, V and IF, in their local memory. 

Summarising the design aspects mentioned above, Figure 3 shows a timeline view of 
a typical surgical procedure using our parallel method. 

Figure 3 Timeline view of typical surgical procedure using our parallel method 

 

3.2 Workload distribution 

We now show how our method exploits image parallelism. A good solution to this issue 
balances workload among processors and minimises the amount of messages transmitted 
between processors and the number of sends and receives. To find such a solution, we 
first investigate the characteristics of computation phases (a)–(c) with respect to available 
parallelism, load balancing, and data access pattern. Table 1 shows these characteristics 
with a preliminary timing result measured on a single processor machine. 

• DRR generation. The intensity value at any point ( i ,  j)  can independently be 
computed with the values at other points, because different rays can cast 
independently. The workload associated with each point is nonuniform due to the 
different number of penetrated voxels. Points around the DRR edge tend to have less 
workload. In addition to this image parallelism, we can also use object parallelism 
(Molnar et al., 1994), where processors take the responsibility for each subtask 
associated with a small part of the volume and then merge locally rendered DRRs 
into a final DRR. This object-parallel scheme allows processors to load only a small 
portion of the volume, but it requires communication to generate the final DRR. As 
mentioned earlier, we assume that all processors have the entire volume, so that our 
method uses an image-parallel scheme to prevent communication in this most  
time-consuming phase. 

• Gradient image generation. As in DRR generation, different points can 
independently be processed to obtain their intensities on the gradient image.  
The convolution for point (i, j) requires all intensities A(i + α, j + β) such that  
–K/2 ≤ α, β ≤ K/2, where K denotes the kernel size of the filter. Note here that 
this means any point on the gradient image requires DRR generation of its 
surrounding K × K neighbourhood, because the gradient images are generated from 
the DRR ID as well as the image IF. With regard to load balancing, this computation 
phase has uniform workload, because the same kernel size K is used for every point. 
Note also that the kernel size K is usually a relatively large number, which increases 
the amount of messages under an inappropriate workload distribution scheme.  
For example, we use K = 19 pixels for typical 2-D ROI sizes ranging from 200 × 200 
to 400 × 400 pixels. 
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• NCC computation. NCC computation can be approached as a reduction problem, 
because equation (3) can be rewritten as 

,

2 2 2 2
, ,

( ( , ) ( , ) )
( , ) .

( ( , ) ) ( ( , ) )
i j

i j i j

A i j B i j AB
N A B

A i j A B i j B

−
=

− −

∑
∑ ∑

 (5) 

This equation indicates that NCC can be computed from six local sums: the local  
sums of the number of points; intensities ( , ); ( , );A i j B i j∑ ∑  squared intensities 

2 2( , ) ; ( , ) ;A i j B i j∑ ∑  and multiplied intensities ( , ) ( , ).A i j B i j∑  These sums can 
independently be computed if processors are responsible for the same point ( i ,  j)  on 
images A and B. The workload is perfectly balanced if the same number of points is 
assigned to each processor. However, communication is required to reduce local sums 
into a global sum. 

Table 1 Summary of computation phases with respect to (1) available parallelism; (2) 
workload associated with each point on the 2-D image; (3) data access required for 
each point and (4) sequential time measured using a spine dataset on a single node of 
our cluster 

Computation phase Parallelism Workload 
Data required for  
intensity A(i, j) Time (s) 

(a) DRR generation Image/object* Nonuniform Penetrated voxels 993.7 
(b) Gradient image 

generation 
Image Uniform Surrounding K × K 

neighbourhood intensities 
67.2 

(c) NCC 
computation 

Image** Uniform Corresponding intensity 
B(i, j) 

2.5 

*, **Communication is required to produce the final DRR and to perform reduction 
operations, respectively. 

According to the analysis mentioned above, our method employs a 2-D block distribution 
scheme with the overlap region, as shown in Figure 4. Here, the overlap size is given by 
the kernel size K, allowing processors to produce gradient images without any 
communication. As compared with other distribution schemes such as 1-D/2-D disjoint 
block and cyclic schemes, our scheme has the following advantage/disadvantages: 
• the advantage of less communication, achieved by the overlap region 
• the disadvantage of more computation, due to the redundant DRR generation for the 

overlap region 
• the disadvantage of imbalanced workload, as compared with the cyclic scheme. 

Figure 4 Workload distribution: (a) 2-D disjoint block; (b) 2-D block with the overlap region and 
(c) cyclic distribution schemes. Our method employs (b) 
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If the overlap region is not given, communication is required for block boundaries in 
order to obtain intensities of neighbour points computed by other processors.  
This communication becomes a significant performance bottleneck in the case where 
many processors are responsible for the neighbour points. In this case, processors need to 
gather the intensities from many processors and also have to scatter their own intensities 
to others, but it is not easy to realise both fast scatter and gather operations at the same 
time. Due to this complex communication pattern, the cyclic scheme possibly results in 
poor performance. 

Furthermore, the 1-D/2-D block scheme without the overlap will also suffer from this 
situation as the number of processors P increases, because the kernel size K is relatively 
large compared to the block size, which decreases as P increases. 

Note here that an appropriate distribution scheme depends on the target environment 
such as the hardware configuration and the input data. For example, our scheme may fail 
to provide fast registration on slow processors connected with low-latency network, and 
the block scheme without any overlap may yield higher performance if the kernel size K 
is relatively small compared to the block size. Therefore, the above quantitative analysis 
is important to find the best distribution scheme for the target environment. 

3.3 Proposed method 

We denote by R = {(i, j) | 1 ≤ i ≤ SI, 1 ≤ j ≤ SJ} the domain of the ROI specified on the  
2-D image, where SI and SJ are the horizontal and vertical sizes of the ROI, respectively. 
Let Rp, where 1 ≤ p ≤ P, be the pth subdomain partitioned by the 2-D disjoint block 
scheme such that 1 and ,  for all 1 .P

p p p q p q P== = ≤ ≤ ≤∪ ∩R R R R Ø  Let p
+R  be the  

p-th subdomain with its overlap region. 
Given P processors, our parallel method aligns t he volume V to the image IF as 

follows. 

1 Data load. For all 1 ≤ p ≤ P, processor p loads the volume V from its local disk into 
main memory and waits for registration tasks to be submitted. Then, processor 1 
serves as a gateway receiving a registration task with its input data: the projected 
image IF, the initial parameter T, and the initial step size λ. After this, the gateway 
broadcasts these input data to all processors. 

2 DRR generation. For all 1 ≤ p ≤ P, processor p locally generates a DRR for 
subdomain p

+R . 

3 Gradient image generation. For all 1 ≤ p ≤ P, processor p locally generates the 
gradient images for disjoint subdomain Rp. 

4 NCC computation. For all 1 ≤ p ≤ P, processor p locally computes six local sums 
from subdomain Rp. Then, every processor participates in a reduction 
communication to combine local sums from all processors and distribute the global 
sum back to all processors. After this communication, every processor has six global 
sums, so that locally computes NCC. 

5 Optimisation. Repeat 2–4 13 times to update the parameter T by using the steepest 
descent optimisation. Repeat this step until a local optimum has been found. 
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3.4 Theoretical performance analysis 

As we mentioned earlier, the objective of this theoretical analysis is to estimate the 
balancing point between speculative and data-parallel processing with respect to the 
number of processors. To do this, we estimate the speedup U = TSEQ/TPAR on P 
processors, where TSEQ and TPAR denote the sequential and parallel registration time, 
respectively. Then, we consider U processors to be an appropriate number for  
data-parallel processing, because the efficiency U/P usually results in a lower value when 
using more than U processors for data-parallel processing. This makes the remaining 
max(P – U, 0) processors participate in speculative processing. 

To make the analysis easier, we focus on the body of the time-consuming loop, 
namely the three computation phases (a)–(c). The remaining phases such as the data load 
phase are disregarded in the analysis, because they can be processed in rapid time, as 
compared with the three phases. We also analyse a single iteration of the loop, because 
the iterative nature of our method allows us to substitute the speedup for a single 
iteration for the whole iteration. Furthermore, we assume that the workload of DRR 
generation is balanced between processors. 

Table 2 shows the notations used in the analysis. Let t1, t2 and t3 be the sequential 
time for DRR generation, gradient image generation and NCC computation at an 
optimisation step, respectively. Then, a sequential step takes 

1 2 3.SEQT t t t= + +  (6) 

Table 2 Notations used in the theoretical performance analysis 

Symbol Description 
SI and SJ Horizontal and vertical size of the ROI 
K Kernel size of the filter 
P Number of processors 
PI and PJ Number of processors in the horizontal and vertical direction such that P = PIPJ 
t1, t2 and 
t3 

Sequential times for DRR generation, gradient image generation, and NCC 
computation, respectively 

L Communication latency between nodes 

Let PI and PJ be the number of processors in the horizontal and vertical directions of the 
image, respectively, such that P = PIPJ. In the DRR generation phase, each processor 
takes the responsibility for a subdomain p

+R  of size (SI/PI + K – 1) × (SJ/PJ + K – 1), 
while the entire domain for this phase contains (SI + K – 1) × (SJ + K – 1) pixels, which 
are sequentially processed in t1 time. Assuming that the workload is balanced among 
processors, we can estimate the parallel time for DRR generation. On the other hand, 
during the local computation of the last two phases, each processor is responsible for a 
SI/PI × SJ/PJ portion Rp of the entire domain R of size SI × SJ. In addition to this 
local computation, NCC computation takes additional time for an all reduce 
communication (Message Passing Interface Forum, 1994). A tree-structured 
communication strategy efficiently realises this in 2L log2 P time, where L represents the 
communication latency between two nodes in the tree. The final computation using the 
global sums is rapid enough to ignore. 



      

   

   

 

   

    A parallel implementation of 2-D/3-D image registration 353    
 

    
 
 

   

 

 

       
 

Summing up each time, a parallel optimisation step takes 

( ) ( )

( )
1

2 3 2

/ 1 / 1
( 1)( 1)

/ /
( ) 2 log .

I I J J
PAR

I J

I I J J

I J

S P K S P K
T t

S K S K

S P S P
t t L P

S S

+ − + + −      =
+ − + −

      + + +

 (7) 

Thus, given time and size information on a sequential optimisation step, equations (6) 
and (7) estimate the speedup U so that determine the appropriate number of processors. 

4 Experimental results 

To evaluate the performance of our parallel method, we have implemented it using the 
C++ language and Message Passing Interface (MPI) standard (Message Passing Interface 
Forum, 1994). 

4.1 Experimental setup 

We used a cluster of 64 PCs, each equipped with two Pentium III 1-GHz processors.  
The interconnection between nodes is a Myrinet switch (Boden et al., 1995), yielding a 
bandwidth of 2 Gb/s. Our implementation runs on a Linux operating system with the 
MPICH-SCore library (O’Carroll et al., 1998), a fast MPI implementation. 

We performed registration tasks using datasets of a femur phantom and a real spine 
(see Table 3). The biplane images are generated as the front (coronal) view and the side 
(sagittal) view of the body. The kernel size K of the Gaussian filter was experimentally 
determined as K = 19 pixels (σ = 3). 

Table 3 Dataset specification 

 Femur phantom Real spine 
3-D volume size 256 × 256 × 367 voxels 512 × 512 × 204 voxels 
File size 45 MB 102 MB 
ROI size 53 × 47 × 54 voxels 299 × 299 × 47 voxels 
2-D image size 640 × 512 pixels 1024 × 1024 pixels 
File size 320 KB 2 MB 
ROI size (front) 353 × 276 pixels 340 × 204 pixels 
ROI size (side) 344 × 272 pixels 336 × 200 pixels 

As presented earlier in Figure 3, we first produced the CT volume and distributed it with 
its ROI information to each node before running our registration program.  
This distribution takes 1.7 s and 3.8 s on the Myrinet network for the femur and the spine 
datasets, respectively. On the other hand, the 2-D fluoroscopy images are produced 
immediately before registration and then are broadcast by the registration program itself. 
It takes 37 ms and 119 ms to broadcast each dataset, respectively. 
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4.2 Timing results 

Figure 5 shows experimental and theoretical timing results on different numbers of 
processors. Here, theoretical values are derived using equation (7) and multiplying the 
number of iterations required for optimisation. We can see that our implementation, 
running on P = 128, reduces computation time for the spine dataset from 17 m (1065 s) to 
35 s. It also achieves a shorter time of 9 s for the femur dataset with a smaller ROI. Times 
of less than 60 s are compatible with the time constraints required for surgery. Thus, our 
parallel method enables us to utilise the registration technique during surgery without 
degrading the quality of alignment. 

Figure 5 Registration time: (a) for femur phantom and (b) for real spine on different numbers of 
processors. Sequential registration takes 320 s and 1065 s for each dataset 

 

Figure 6 shows experimental and theoretical speedups on different numbers of 
processors. For both datasets the maximum speedup of our implementation reaches about 
a factor of 32 when P = 128. Thus, the speedup does not increase so well when P ≥ 32. 
This is due to the kernel size K of the filter, which is relatively large when compared to 
the size of disjoint blocks. For example, when using 128 processors (〈Pi, Pj〉 = 〈16, 8〉) for 
the femur dataset, the size of disjoint blocks becomes SI/PI × SJ/PJ = 23 × 35 pixels 
while that of overlapping blocks becomes (SI/PI + K – l) × (SJ/PJ + K – l) = 41 ×  53  
pixels. This means that each processor performs about 2.7 times more computation due to 
redundant DRR generation as compared with under disjoint distribution schemes.  
Thus, the speedup for a single registration task results in a lower value as P (PI and PJ) 
increases under the fixed ROI size SI and SJ. 

Figure 6 Speedup: (a) for femur phantom and (b) for real spine on different numbers of 
processors 
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4.3 Discussion 

On workload distribution 

If we change our distribution scheme to a 1-D block scheme with overlap, the size of 
disjoint blocks and that of overlapping blocks on P = 128 become 3 × 276 and 21 × 294 
pixels, respectively. Therefore, this 1-D scheme requires about 7.5 times more 
computation, resulting in a lower speedup. Moreover, since the vertical length of 1-D 
blocks becomes shorter than the kernel size K of the filter, processors need to 
communicate with more processors to obtain intensities of vertical neighbours, having a 
more complex communication pattern with network contention. 

Although our overlapping scheme requires redundant computation for DRR 
generation, this disadvantage is covered by the advantage of less communication. If a 2-D 
disjoint block scheme is employed, every processor needs to communicate its boundary 
data with its vertical/horizontal/diagonal neighbours. Though this can be implemented by 
repeating shift communication operations, these operations could be a performance 
bottleneck. For example, when using 128 processors for the femur dataset, this scheme 
causes 2.7 KB (41 × 53 – 23 × 35 pixels, each in 2 bytes) of incoming data and the same 
amount of outgoing data at every processor, which must be sequentially processed in 
eight shift communication operations. 

On theoretical analysis 

With respect to the accuracy of our analysis, the prediction error ranges from 3% to 30% 
for both datasets. The error is less than 5% when P < 32 but increases with P. Thus, the 
accuracy decreases as P increases. We guess that this lower accuracy is due to the 
assumption made in the DRR generation phase. That is, though our analysis assumes 
uniform workload in this phase, it becomes more imbalanced as P increases. Actually, the 
error in this phase dominates the entire error. 

Although the maximum prediction error of 30% seems a high value, our analysis 
provides sufficient information to determine the number of processors that should be 
engaged with speculative processing. That is, it estimates the speedup on 128 processors 
to be about 48, which suggests that at most 48 processors should be used for data-parallel 
processing. In this case, the registration task can be started simultaneously with three or 
four different initial parameters in order to prevent unsuccessful alignments with a small 
performance loss. 

Thus, the prediction accuracy could be improved by another more detailed analysis; 
for example, by taking account of the workload in the DRR generation phase. However, 
we think that the appropriate number of processors can be estimated well by our analysis, 
which requires only time and size information on a single sequential optimisation step. 

On speculative processing 

In our experiments, we found that the speedup was limited by a relatively smaller value, 
as compared with P. In this situation, where the speedup is theoretically limited by a 
small value, using more processors for data-parallel processing results in a lower 
utilisation of computing nodes. To deal with this, our method tries to raise the speedup by 
means of speculative processing. This strategy will lead to a higher speedup if 
optimisation is repeatedly processed with different initial parameters due to unsuccessful 
alignments. 
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Another important motivation to exploit speculative parallelism comes from the fact 
that the registration algorithm sometimes fails to align objects due to local optimums. 
Therefore, our strategy will also improve the confidence of registration technique, 
providing more robust alignment for a wide variety of clinical scenarios. 

5 Related work 

There are many papers reporting experiences in using High Performance Computing 
(HPC) resources to realise intraoperative assistances based on compute-intensive 
applications. To the best of our knowledge, such applications include rigid/nonrigid 
image registration (Ino et al., 2005; Rohlfing and Maurer, 2003; Warfield et al., 1998, 
2000), biomechanical simulation (Kawasaki et al., 2004), and image visualisation  
(Liao et al., 2003). All of these applications exploit data parallelism in the 2-D image 
space or the 3-D object space. In contrast, the key contribution of this work is the 
development of a 2-D/3-D rigid registration method that exploits both data parallelism 
and speculative parallelism. This combination is applicable to many optimisation-based 
registration algorithms, accelerating registration tasks with more robustness. 

Recently, computational Grids are also emerging as an attractive HPC platform. 
Hastings et al. (2003) show a toolkit that allows rapid and efficient development of 
biomedical image analysis applications in a distributed environment. Their toolkit 
exploits data and coarse grain task parallelism in a chain of processing operations that 
begins with data acquisition and ends with data visualisation. Stefanescu et al. (2004) 
present a grid service that accelerates nonrigid registration tasks by exploiting image 
parallelism. 

Although clusters generally have more tightly-coupled computing nodes than Grids, 
we believe that our method, which requires less communication but more computation, 
also could provide a fast registration service on Grids. 

6 Conclusions and future work 

We have presented a parallel method for 2-D/3-D registration, aiming at realising  
intra-operative alignment. Our method exploits data and speculative parallelism in an 
intensity-based algorithm, so that we can perform fast, accurate, and robust registration 
during surgery. Our implementation on a cluster of 64 PCs aligns a 299 × 299 × 47 voxel 
volume to 340 × 204 pixel images in a few tens of seconds, a clinically compatible time. 

In the future, our parallel implementation could be improved by exploiting task 
parallelism in order to achieve further acceleration. Although we currently avoid this to 
have better load balancing, exploiting this parallelism certainly accelerates a registration 
task. We are also planning to integrate our implementation into a Grid-enabled 
environment in order to provide a fast, accurate, and robust 2-D/3-D registration service 
through the Internet to hospitals. 
 
 
 
 



      

   

   

 

   

    A parallel implementation of 2-D/3-D image registration 357    
 

    
 
 

   

 

 

       
 

Acknowledgements 

This work was partly supported by JSPS Grant-in-Aid for Scientific Research on Priority 
Areas (16016254 and 17032007) by the Ministry of Education, Culture, Sports, Science 
and Technology of Japan. 

References 
Boden, N.J., Cohen, D., Felderman, R.E., Kulawik, A.E., Seitz, C.L., Seizovic, J.N. and Su, W-K. 

(1995) ‘Myrinet: a gigabit-per-second local area network’, IEEE Micro, Vol. 15, No. 1,  
pp.29–36. 

Feldmar, J., Ayache, N. and Betting, F. (1997) ‘3D-2D projective registration of free-form curves 
and surfaces’, Computer Vision and Image Understanding, Vol. 65, No. 3, pp.403–124. 

Gueziec, A., Kazanzides, P., Williamson, B. and Taylor, R.H. (1998) ‘Anatomy-based registration 
of CT-scan and intraoperative X-ray images for guiding a surgical robot’, IEEE Trans. 
Medical Imaging, Vol. 17, No. 5, pp.715–728. 

Hajnal, J.V., Hill, D.L. and Hawkes, D.J. (Eds.) (2001) Medical Image Registration, CRC Press, 
Boca Raton, FL. 

Hastings, S., Kurc, T., Langella, S., Catalyurek, U., Pan, T. and Saltz, J. (2003) ‘Image processing 
for the grid: a toolkit for building grid-enabled image processing applications’, Proc. 3rd 
IEEE/ACMInt. Symp. Cluster Computing and the Grid (CCGrid’03), Tokyo, Japan, pp.36–13. 

Herring, J.L., Dawant, B.M., Maurer, C.R., Muratore, D.M., Galloway, R.L. and Fitzpatrick, J.M. 
(1998) ‘Surface-based registration of CT images to physical space for image-guided surgery of 
the spine: a sensitivity study’, IEEE Trans. Medical Imaging, Vol. 17, No. 5, pp.743–752. 

Ino, F., Ooyama, K. and Hagihara, K. (2005) ‘A data distributed parallel algorithm for nonrigid 
image registration’, Parallel Computing, Vol. 31, No. 1, pp.19–43. 

Joskowicz, L., Milgrom, C., Simkin, A., Tockus, L. and Yaniv, Z. (1998) ‘FRACAS: a system for 
computer-aided image-guided long bone fracture surgery’, Computer Aided Surgery, Vol. 3, 
No. 6, pp.271–288. 

Kawasaki, Y., Ino, F., Mizutani, Y., Fujimoto, N., Sasama, T., Sato, Y., Sugano, N., Tamura, S. 
and Hagihara, K. (2004) ‘High-performance computing service over the Internet for 
intraoperative image processing’, IEEE Trans. Information and Technology in Biomedicine, 
Vol. 8, No. 1, pp.36–46 

Lavallée, S. and Szeliski, R. (1995) ‘Recovering the position and orientation of free-form objects 
from image contours using 3D distance maps’, IEEE Trans. Pattern Analysis and Machine 
Intelligence, Vol. 17, No. 4, pp.378–390. 

Lemieux, L., Jagoe, R., Fish, D.R., Kitchen, N.D. and Thomas, D.G.T. (1994)  
‘A patient-to- computed-tomography image registration method based on digitally 
reconstructed radiographs’, Medical Physics, Vol. 21, No. 11, pp.1749–1760. 

Levoy, M. (1988) ‘Display of surfaces from volume data’, IEEE Computer Graphics and 
Applications, Vol. 8, No. 3, pp.29–37. 

Li, S., Pelizzari, C.A. and Chen, G.T.Y. (1994) ‘Unfolding patient motion with biplane radio 
graphs’, Medical Physics, Vol. 21, No. 9, pp.1369–1512. 

Liao, H., Hata, N., Iwahara, M., Sakuma, I. and Dohi, T. (2003) ‘An autostereoscopic display 
system for image-guided surgery using high-quality integral videography with high 
performance computing’, Proc. 6th Int. Conf. Medical Image Computing and  
Computer-Assisted Intervention (MICCAI’03), PartII, Montréal, Canada, pp.247–255. 

Lorenz, C., Buzug, T.M., Fassnacht, C. and Weese, J. (1997) ‘Automated detection and 
segmentation of lumbar vertebrae in CT and CTA image based on a grey-value profile parser’, 
Proc. Computer Assisted Radiology and Surgery: 11th Int. Congress and Exhibition  
(CARS ‘97), Berlin, Germany, pp.209–214. 



      

   

   

 

   

   358 F. Ino et al.    
 

    
 
 

   

 

 

       
 

Maurer, C.R., Maciunas, R.J. and Fitzpatrick, J.M. (1998) ‘Registration of head CT images to 
physical space using a weighted combination of points and surfaces’, IEEE Trans. Medical 
Imaging, Vol. 17, No. 5, pp.753–761. 

McLaughlin, R.A., Hipwell, J., Hawkes, D.J., Noble, J.A., Bryne, J.V. and Cox, T. (2002)  
‘A comparison of 2D-3D intensity-based registration and feature-based registration for 
neurointer-ventions’, Proc. 5th Int. Conf. Medical Image Computing and Computer-Assisted 
Intervention (MICCAI’02), Part II, Tokyo, Japan, pp.517–524. 

Message Passing Interface Forum (1994) ‘MPI: a message-passing interface standard’, Int. J. 
Supercomputer Applications and High Performance Computing, Vol. 8, Nos. 3–4,  
pp.159–416. 

Molnar, S., Cox, M., Ellsworth, D. and Fuchs, H. (1994) ‘A sorting classification of parallel 
rendering’, IEEE Computer Graphics and Applications, Vol. 14, No. 4, pp.23–32. 

O’Carroll, F., Tezuka, H., Hori, A. and Ishikawa, Y. (1998) ‘The design and implementation of 
zero copy MPI using commodity hardware with a high performance network’, Proc. 12th 
ACM Int. Conf Supercomputing (ICS’98), Melbourne, Australia, pp.243–250. 

Penny, G.P., Weese, J., Little, J.A., Desmedt, P., Hill, D.L.G. and Hawkes, D.J. (1998)  
‘A comparison of similarity measures for use in 2-D-3-D medical image registration’, IEEE 
Trans. Medical Imaging, Vol. 17, No. 4, pp.586–595. 

Press, W.H., Teukolsky, S.A., Vetterling, W.T. and Flannery, B.P. (1988) NUMERICAL RECIPES 
in C: The Art of Scientific Computing, Cambridge University Press, Cambridge, UK. 

Rohlfing, T. and Maurer, C.R. (2003) ‘Nonrigid image registration in shared-memory multi 
processor environments with application to brains, breasts, and bees’, IEEE Trans. 
Information Technology in Biomedicine, Vol. 7, No. 1, pp.16–25. 

Stefanescu, R., Pennec, X. and Ayache, N. (2004) ‘Grid powered nonlinear image registration with 
locally adaptive regularization’, Medical Image Analysis, Vol. 8, No. 3, pp.325–342. 

Warfield, S.K., Ferrant, M., Gallez, X., Nabavi, A., Jolesz, F.A. and Kikinis, R. (2000) ‘Real-time 
biomechanical simulation of volumetric brain deformation for image guided neurosurgery’, 
Proc. High Performance Networking and Computing Conf. (SC2000), CD-ROM, Dallas, TX, 
USA, p.16. 

Warfield, S.K., Jolesz, F.A. and Kikinis, R. (1998) ‘A high performance computing approach to the 
registration of medical imaging data’, Parallel Computing, Vol. 24, Nos. 9–10, pp.1345–1368. 

Weese, J., Penney, G.P., Desmedt, P., Buzug, T.M., Hill, D.L.G. and Hawkes, D.J. (1997) ‘ 
Voxel-based 2-D/3-D registration of fluoroscopy images and CT scans for image-guided 
surgery’, IEEE Trans. Information Technology in Biomedicine, Vol. 1, No. 4, pp.284–293. 

West, J., Fitzpatrick, J.M., Wang, M.Y., Dawant, B.M., Maurer, C.R., Kessler, R.M. and  
Maciunas, R.J. (1999) ‘Retrospective intermodality registration techniques for images of the 
head: Surface-based versus volume-based’, IEEE Trans. Medical Imaging, Vol. 18, No. 2,  
pp.144–150. 

Zollei, L., Grimson, E., Norbash, A. and Wells, W. (2001) ‘2D-3D rigid registration of X-ray 
fluoroscopy and CT images using mutual information and sparsely sampled histogram 
estimators’, Proc. IEEE Computer Society Conf. Computer Vision and Pattern Recognition 
(CVPR ‘01), Vol. 2, Kauai, HI, USA, pp.696–703. 




