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Abstract

This paper presents a performance study of a nonrigid
registration algorithm for investigating lung disease on
clusters. Our algorithm combines two conventional accel-
eration techniques in order to achieve fast registration: a
data-parallel processing technique for accelerating the reg-
istration procedure; and a precomputation technique for re-
ducing the computational complexity. We perform some ex-
periments on three clusters with different CPU and network
performance in order to make clear what kinds of accelera-
tion techniques and computing environments provide higher
performance. The results show that a cluster with Gigabit
Ethernet (GbE) network is the most cost effective solution
that reduces registration time from ten hours to ten minutes
with a linear speedup.

Keywords: image registration, medical image process-
ing, cluster computing, MPI, performance evaluation.

1. Introduction

Image registration [1] is a technique for establishing
point-to-point correspondences between different images
taken at different time, from different viewing points, in dif-
ferent modalities. This technique assists medical doctors in
various diagnoses. For example, it helps them in detecting
cancers by monitoring changes in size, shape, or image in-
tensity over time intervals.

One problem with this technique is that it requires time-
consuming computations in order to realize accurate, ro-
bust, and completely automated alignments. For example,
it takes several hours to align three-dimensional (3-D) clin-
ical images obtained by modern imaging systems such as

∗This work was partly supported by JSPS Grant-in-Aid for Scientific
Research on Priority Areas (17032007).

X-ray computed tomography (CT) scans [8]. Therefore,
some acceleration techniques are needed to utilize registra-
tion during surgery, where registration time is strictly re-
stricted within ten minutes to minimize the patient’s strain.

There are many papers [2, 3, 8, 10–12] reporting experi-
ences in using parallel machines to make registration time
short enough to perform intraoperative registration. These
prior projects successfully accelerate the registration pro-
cedure by reducing computational complexity and by par-
allelizing performance bottlenecks in the procedure. Al-
though they present that combining some acceleration tech-
niques realizes intraoperative registration, it is still not clear
how efficiently each technique reduces registration time.

In this paper, we study the performance of a nonrigid
registration algorithm, aiming at making clear what kinds
of acceleration techniques and computing environments are
effective to reduce registration time. To do this, we im-
plement a registration algorithm for investigating lung dis-
ease on clusters. Our algorithm is based on an optimization
approach [9], which resolves the registration problem into
an optimization problem. We combine this approach with
two conventional acceleration techniques: a data-parallel
processing technique for accelerating the registration pro-
cedure; and a precomputation technique for reducing the
computational complexity.

The remainder of the paper is as follows. Section 2
presents a brief overview of the registration algorithm with
the two acceleration techniques mentioned above. Section
3 shows the performance study on three clusters of PCs. Fi-
nally, Section 4 summarizes the paper.

2. Nonrigid Registration

Let F and R be the floating and reference images, re-
spectively. The nonrigid registration problem is defined as
computing a nonrigid transformation T that aligns F to R.
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Figure 1. Optimization-based registration al-
gorithm [5]. It minimizes the cost function C
by the steepest descent optimization [7] in a
coarse-to-fine manner. The final mesh Φ de-
termines the final transformation T.

To compute this, our algorithm uses an optimization ap-
proach [5], which aligns images through the optimization
of a cost function C associated with a similarity measure
between the images (see Figure 1). This optimization is per-
formed by means of the steepest descent optimization [7] in
a coarse-to-fine manner. This hierarchical alignment strat-
egy contributes to reduce the computational complexity.

Our algorithm has four advantages as follows:

• Hierarchical, locally controlled deformations [9] by B-
spline functions [4];

• Robust similarity measure by information theory [5];

• Fast B-spline interpolation by precomputation [8];

• Fast optimization by parallelization [11].

2.1. Hierarchical Deformation Model

Our algorithm employs B-spline functions in order to
represent the nonrigid transformation T at lower complex-
ity. B-spline functions are computationally efficient be-
cause they use interpolation to realize hierarchical, locally
controlled free-form deformations (FFDs).

(a) (b)

Figure 2. Hierarchical B-spline free-form de-
formations (FFDs) [9]. (a) Deformations of the
floating image are performed by manipulat-
ing an overlaying mesh of control points in a
coarse-to-fine manner. δ represents the spa-
tial resolution of control points and φi,j repre-
sents a control point. (b) The deformation of
point (x, y) is determined by its surrounding
4 × 4 neighborhood of control points.

Figure 2 shows how this interpolation is applied to image
F . The nonrigid transformation T is given by manipulating
a mesh of control points overlayed in the image domain Ω =
{(x, y, z) | 0 ≤ x < X, 0 ≤ y < Y, 0 ≤ z < Z}. Given
a mesh Φ of control points φi,j,k, the transformation T of
point (x, y, z) in image F is defined by

T(x, y, z) =
3∑

l=0

3∑
m=0

3∑
n=0

Bl(u)Bm(v)Bn(w)φi+l,j+m,k+n, (1)

where u = x/δ − �x/δ�, v = y/δ − �y/δ�, w = z/δ −
�z/δ�, i = �x/δ�−1, j = �y/δ�−1, k = �z/δ�−1, and Bl

represents the l-th basis function of cubic B-splines. This
equation means that the deformation of any point (x, y, z)
is given by interpolating the deformations of its surrounding
4 × 4 × 4 neighborhood of control points (see Figure 2(b)).

Recall here that our algorithm aligns images in a coarse-
to-fine manner. To do this, the algorithm organizes mesh
Φ, images F and R in a hierarchy. Then, it decreases the
spatial resolutions of images and control points, γ and δ,
respectively, at each level of hierarchy.

2.2. Cost Function

The cost function for optimization is defined by Rueckert
et al. [9] as follows:

C(Φ) = −Csimilarity(R,T(F )) + αCsmooth(T), (2)
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where Csimilarity(R,T(F )) is the similarity measure be-
tween the reference image R and the transformed floating
image T(F ), Csmooth is the penalty term that constrains
the spline-based transformation to be smooth, and α is the
weighting parameter which is determined experimentally.

For the similarity measure Csimilarity, our algorithm em-
ploys a general measure based on information theory. This
information-based strategy does not depend on specific fea-
tures of images, for example, contours and surfaces, so
that it realizes robust registration of multimodality images
[5, 8, 9]. Although there are many measures such as mu-
tual information [5] and its normalized version [9], we have
experimentally determined to use correlation coefficient for
lung registration. In summary, the similarity measure be-
tween images A and B is given by

Csimilarity(A,B) =∑
(A(x, y, z) − Ā)(B(x, y, z) − B̄)√∑

(A(x, y, z) − Ā)2
∑

(B(x, y, z) − B̄)2
, (3)

where A(x, y, z) is the image intensity at point (x, y, z) in
image A, and Ā is the mean intensity in image A.

The penalty term Csmooth intends to regularize the trans-
formation in order to avoid unsmooth deformations. For
lung registration, we use the following constraint model:

Csmooth =

1
V

∫ X

0

∫ Y

0

∫ Z

0

[(
∂2T
∂x2

)2

+
(

∂2T
∂y2

)2

+
(

∂2T
∂z2

)2

+2
(

∂2T
∂xy

)2

+ 2
(

∂2T
∂xz

)2

+ 2
(

∂2T
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)2

+
λ

2

(
∂2T
∂x2

+
∂2T
∂y2

+
∂2T
∂z2

)2
]

dxdydz, (4)

where V denotes the volume of the image domain Ω, and
λ represents the elastic coefficient for lung. From the view-
point of physics, this term approximates the energy of an
isotropic elastic object (namely lung tissue) which is sub-
jected to deformations with volume change.

As we mentioned before, our algorithm employs the
steepest descent optimization [7] to find the optimal trans-
formation parameter Φ that minimizes Eq. (2). The algo-
rithm stops this optimization if a local optimum has been
found. Here, it assumes a local optimum if ||∇C|| ≤ ε,
where ∇C = ∂C/∂Φ, and ||∇C|| and ε represent the gra-
dient norm of the cost function C and a threshold for min-
imization, respectively. The gradient ∇C is estimated by
using the finite-difference approximation [7].

2.3. Precomputation for B-spline Interpolation

In order to reduce the computational complexity of B-
spline FFDs, we applied Rohlfing’s precomputation tech-

Figure 3. Precomputation [8] for B-spline in-
terpolation. Gray colored voxels have the
same value φ̂i+l, and thereby this term should
be computed only once.

nique [8] to the algorithm. The key idea of this technique is
precomputation that intends to eliminate redundant compu-
tations which are repeatedly for some different points.

Suppose that we have a zyx-loop to compute T(x, y, z)
for all points (x, y, z) in the image domain Ω. Eq. (1)
can be rewritten as T(x, y, z) =

∑3
l=0 Bl(u)φ̂i+l, where

φ̂i+l =
∑3

m=0

∑3
n=0 Bm(v)Bn(w)φi+l,j+m,k+n. Then,

term φ̂i+l keeps the same value for all points (x, y, z) in
one row located within the same cell of the mesh (see Figure
3). Therefore, placing this computation outside the x-loop
reduces the total computational cost for the zyx-loop.

This modification allows us to compute the basic B-
spline function only 4n3+42n2+43n times while the unop-
timized implementation computes it 192n3 times, where n
represents the number of points in the image. Therefore, the
execution time for object deformations will be significantly
reduced by 98%.

2.4. Parallelization

Although the precomputation technique contributes to
reduce registration time, parallelization is still required to
make it be compatible with surgical usage.

Because nonrigid registration is not a data-intensive ap-
plication, we assume that all computing nodes have the en-
tire images in their local memory. Actually, a 512 × 512 ×
512 voxel image consisting of 2-bytes requires 256MB of
memory, so that this assumption is reasonable for modern
PCs equipped with more than 512MB of main memory.

We first analyzed our sequential implementation to lo-
cate performance bottlenecks:

• Gradient computation. This computation phase is re-
quired for the steepest descent optimization of the cost
function. It takes approximately 57% of total registra-
tion time.

• Similarity computation. Computing the cost function
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(a) (b) (c)

Figure 4. Checkerboard visualization of reference and floating images (a) before and (b) after regis-
tration. The registered image in (b) has the same contours as in (c) the reference image.

C is also a performance bottleneck. It takes 42% of the
total time.

• Image sampling. This phase occurs when the algo-
rithm increases the hierarchy of alignment. Although
this phase is a small bottleneck on single CPU ma-
chines, it should be parallelized on parallel machines,
because I/O operations usually become a larger bottle-
neck as the number of CPUs increases.

Each of the above computation phases has parallelism in
the image space. Therefore, we can parallelize each phase
by decomposing the image domain into small portions and
assigning them to CPUs. After processing these portions
in a data-parallel manner, each CPU has a local computa-
tion result, so that a collective communication is needed
to reduce local results into a global result. Thus, the en-
tire workload can be decomposed into many independent
pieces.

For this workload distribution, our parallel algorithm
employs a cyclic distribution, because we assume no data
decomposition. This cyclic strategy statically balances
workloads among CPUs. In other words, static load balanc-
ing is sufficient for our algorithm whose workload is gener-
ated uniformly in the image domain.

3. Performance Study

To make clear the timing benefits of the acceleration
techniques mentioned above, we now study the perfor-
mance of the registration algorithm using three Linux clus-
ters with different performance characteristics in terms of
CPU and network. Our registration algorithm is imple-
mented using the C++ language and the Message Passing
Interface (MPI) standard [6].

Table 1. Dataset specification.
Level Image size Number of control points

1 33 × 33 × 36 252
2 65 × 65 × 70 1,848
3 129 × 129 × 138 13,041
4 257 × 257 × 275 97,785

We performed nonrigid registration using a pair of lung
CT images (see Figure 4). Table 1 shows its specification
with the hierarchical organization. The file size of an image
is 157MB.

Table 2 summarizes our clusters. Each cluster has two
interconnection networks: one is specialized for data com-
munication between computing nodes; and the other, the
Ethernet-based network, is basically for I/O from/to the cen-
tralized storage server. Note here that cluster #1 is a uni-
processor (UP) system while the remaining clusters are 2-
way symmetric multiprocessor (SMP) systems.

3.1. Acceleration Results by Precomputation

Table 3 shows the timing results measured on a single
node in the clusters. The precomputation technique reduces
registration time by 21–39%. These results are reliable, be-
cause the execution time for object deformations, which is
included in registration time, is reduced by 83–86% while
our theoretical analysis predicts a reduction of at most 98%.
Thus, measured reduction is close to predicted reduction.

These timing results also indicate that sufficient tunings
are essential to parallelize sequential implementations in a
proper manner. For example, if the precomputation tech-
nique was not applied to the sequential implementation, we
might have parallelized the code for B-spline interpolation.
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Table 2. Cluster specification. Network bandwidth and latency are measured using a performance
measurement tool (http://www.scl.ameslab.gov/netpipe/).

Component Cluster #1 Cluster #2 Cluster #3
CPU Xeon 3.2GHz Xeon 2.8GHz Pentium III 1GHz
Cache size 512KB 512KB 256KB
Number of nodes 32 16 64
Number of CPUs per node 1 2 2
Network #1 InfiniBand (InB) Myrinet-PCIX (MYX) Myrinet-2k (MY)
Bandwidth 3999Mb/s 1848Mb/s 1433Mb/s
Latency 10µs 6µs 9µs
Network #2 GbE GbE Fast Ethernet (FE)
Bandwidth 852Mb/s 897Mb/s 89Mb/s
Latency 22µs 17µs 48µs

Table 3. Precomputation results on 1 CPU.
Cluster Original Optimized Reduction

time (s) time (s) rate (%)
#1 18,352 11,209 39
#2 21,796 13,536 38
#3 59,424 46,997 21

However, this parallelization does not make sense if the
code becomes a trivial bottleneck after applying precom-
putation, as we presented in Table 3.

3.2. Acceleration Results by Parallelization

Table 4 shows the parallelization results on three clus-
ters. Note here that we basically measure the performance
on a UP configuration. SMP configurations are employed
only if all CPUs are required to measure the performance.

Our implementation successfully reduces registration
time as the number of CPUs increases, so that registra-
tion time is reduced from hours to minutes. As a result, it
achieves linear speedups in most cases. Here, the speedup
Sp on p CPUs is given by Sp = T1/Tp, where Tp repre-
sents registration time on p CPUs. In this table, there are
four important points to be mentioned.

• GbE is most cost effective network in terms of per-
formance. Although some special networks such as
InfiniBand (InB) and Myrinet-PCIX (MYX) provide
higher bandwidth with shorter latency (see Table 2),
there is no significant difference with respect to the
performance.

• When using less than 8 nodes with MYX (cluster #2),
the speedup exceeds the number of CPUs. This su-
perlinear speedup is due to the memory hierarchy, be-
cause our parallel scheme allows CPUs to access a

smaller part of the image domain, as compared to the
sequential implementation. Therefore, as the number
of CPUs increases, we have higher cache utilization.
Note here that, at the same time, CPUs generally spend
longer time for communication. Thus, the superlin-
ear speedup appears only when the program achieves
higher cache utilization with less communication.

• When using more than 32 nodes with Fast Ethernet
(FE) network (cluster #3), we obtain lower speedups.
This lower acceleration is due to its lower network
bandwidth, because it causes network contention. This
can be explained by Table 5, which presents the ratio
of communication time. Almost half of the entire time
is spent for communication, mainly due to image load-
ing from the storage server.

• When using more than 32 nodes with Myrinet (MY)
network (cluster #3), we also obtain lower speedups.
In contrast to FE network, the communication ratio on
MY network is kept a lower value even when using
128 nodes (Table 5). Therefore, this lower acceler-
ation is due to computation rather than communica-
tion. The reason for this is that SMP systems, which
share the memory bus with CPUs in a node, have lower
memory bandwidth, as compared to UP systems. Ta-
ble 6 presents how this lower bandwidth drops the reg-
istration performance. In this table, we can see that
the parallel efficiency for a SMP configuration is 10%
lower than that for UP configurations, though all the
three configurations use the same number of CPUs.
Thus, when using 128 CPUs on cluster #3, it takes
longer time to fetch the data from the main memory,
as compared with UP configurations. In summary, the
SMP architecture decreases the parallel efficiency for
memory-intensive registration applications.
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Table 4. Parallelization results on p CPUs. Times are presented in seconds.
Cluster Registration time (speedup)

p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128
#1 w/ InB 11,209 (1.0) 5,880 (1.9) 2,811 (4.0) 1,491 (7.5) 767 (15) 413 (27) — —
#1 w/ GbE 11,209 (1.0) 5,682 (1.9) 2,843 (3.9) 1,513 (7.4) 811 (14) 457 (25) — —
#2 w/ MYX 13,536 (1.0) 6,617 (2.0) 3,423 (4.0) 1,681 (8.1) 872 (16) 507 (27) — —
#2 w/ GbE 13,536 (1.0) 7,107 (1.9) 3,685 (3.7) 1,692 (8.0) 889 (15) 539 (25) — —
#3 w/ MY 46,997 (1.0) 24,896 (1.9) 12,556 (3.7) 6,369 (7.4) 3,250 (14) 1,756 (27) 965 (49) 760 (62)
#3 w/ FE 46,997 (1.0) 24,915 (1.9) 12,793 (3.7) 6,726 (7.0) 3,705 (13) 2,332 (20) 1,661 (28) 1,547 (30)

Table 5. Communication-to-computation ratio
presented in percentages.

Cluster p: number of CPUs
2 4 8 16 32 64 128

#1 w/ InB 0.02 0.1 0.2 0.5 0.8 — —
#1 w/ GbE 0.1 0.5 2.2 5.6 10.8 — —
#2 w/ MYX 0.04 0.1 0.3 0.6 1.6 — —
#2 w/ GbE 0.07 0.2 0.6 1.2 3.7 — —
#3 w/ MY 0.02 0.1 0.1 0.3 0.9 2.4 2.6
#3 w/ FE 0.4 1.6 5.0 12.7 25.4 42.8 52.0

4. Conclusions

We have presented a performance study of a nonrigid
registration algorithm using three clusters. Our algorithm is
based on an optimization approach with two conventional
acceleration techniques: a data-parallel processing tech-
nique; and a precomputation technique.

The experimental results show that (1) the precomputa-
tion technique realizes efficient B-spline deformations and
reduces registration time by 39%; (2) the data-parallel pro-
cessing technique is necessary to reduce registration time
from hours to minutes; (3) it also achieves a linear speedup
on clusters with GbE network; and (4) faster I/O and net-
work infrastructures are essential to achieve higher paral-
lel efficiency for large-scale clusters with more than 32
nodes. We also have indicated that sequential implemen-
tations should be optimized well enough in advance of par-
allelization in order to avoid unnecessary parallelization.
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