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Abstract

This paper describes the design and implementation of
Gordini, a performance analysis tool that is capable of au-
tomatically locating places in the source code where a com-
munication optimization technique can be applied for per-
formance debugging of message passing parallel programs.
Our automatic search approach is based on data depen-
dence analysis on trace files. It currently supports three
techniques: communication–computation overlap, message
aggregation, and collective communication. In case stud-
ies, Gordini assists us in improving the performance of so-
phisticated programs coded by experts, the two first prize
winners of software contests. Therefore, we believe that our
automatic approach is useful for application developers to
locate communication bottlenecks in programs.

1 Introduction

Developing efficient parallel applications is not easy
compared to sequential applications. For example,
message passing parallel applications with inappropriate
data/workload distribution can easily result in poor perfor-
mance due to frequent communication and load imbalance
among processors. Therefore, to create faster applications,
it is important to locate and eliminate performance bottle-
necks that limit application performance.

In order to assist developers in performance analysis of
message passing parallel applications, many performance
analysis tools [5] have been proposed in the past. Such tools
offer useful capabilities based on postmortem analysis of a
trace file, namely a file of time-stamped events recorded
during program execution. For example, Paragraph [8],
VAMPIR [13], Jumpshot [23], and TAU [18] provide the
timeline view of events and messages, which enables de-
velopers to intuitively understand the status and behavior of

processors along the time axis. They also are capable of
displaying several diagrams with statistical analysis of pro-
gram execution and that of communication primitives.

In contrast to these postmortem tools, some tools em-
ploy dynamic instrumentation techniques to analyze large-
scale applications running for hours or days on hundreds of
processors. AIMS [22] supports source code instrumenta-
tion, runtime monitoring, graphical execution profiles, per-
formance indices, and automated modeling techniques in
order to support performance visualization, profiling, and
modeling. Paradyn [12] performs automatic runtime anal-
ysis for performance bottleneck search based on thresholds
and a set of hypotheses structured in a hierarchy. For exam-
ple, it locates a synchronization bottleneck if waiting time
is greater than 20% of the program’s execution time.

Thus, earlier tools offer useful capabilities for perfor-
mance analysis. However, only Paradyn guides developers
directly to performance bottlenecks in applications. Most of
the tools need developers to (1) locate performance bottle-
necks in graphical views, (2) identify the causal reasons for
their occurrences, and (3) determine the methods for their
elimination. All of the above performance debugging pro-
cesses are due to developers. Therefore, even if develop-
ers notice that a communication routine spends most of the
overall execution time, they must guess the causal reasons.
For example, it may be due to the long waiting time for
synchronization between processors, or simply be due to
the accumulated time for iterative execution of the routine
inside a loop body. Accordingly, some developers fail to
identify the causal reasons, resulting in poor performance.

Furthermore, finding performance bottlenecks in large-
scale applications is not easy for developers, because such
applications usually generate large trace files, which make
graphical views complicated. These complicated views lose
the visual advantage of intuitive understanding, so that even
experienced developers may miss performance bottlenecks
hidden in graphical views.
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Paradyn supports this search process by locating perfor-
mance bottlenecks with their causal reasons. However, de-
velopers need to consider how to eliminate the bottlenecks.
Furthermore, because its search strategy is structured in a
hierarchy like as modules, routines, and statements, some
bottlenecks can be missed in a higher level of the hierarchy.
Therefore, detailed analysis may be required to expose the
bottlenecks hidden in a lower level of the hierarchy.

To overcome issues (1)–(3), our tool aims at satisfying
the following two requirements.

R1: The tool is capable of locating performance bottle-
necks automatically.

R2: The tool is capable of guiding developers how to elim-
inate the located performance bottlenecks.

Satisfying the above requirements frees developers from
performance bottleneck search and from determining the
methods for bottleneck elimination, allowing them to focus
on program modification.

In this paper, we describe the design and implementation
of Gordini, a performance analysis tool that aims at satisfy-
ing requirements R1 and R2 for message passing parallel
programs. The key capability of Gordini is automatic bot-
tleneck search based on data dependence analysis on trace
files. Gordini directs developers to places in the source code
where communication optimization techniques can be ap-
plied. It currently supports the following three techniques:
communication–computation overlap [17], message aggre-
gation [2], and collective communication. We also present
some case studies in which Gordini successfully improves
the performance of sophisticated programs.

2 Overview of Gordini

2.1 Architecture

Gordini currently supports parallel programs written us-
ing the C language and the Message Passing Interface (MPI)
standard [11]. It runs on computing platforms where the
C++ language and the Tcl/Tk toolkit, a graphical user inter-
face (GUI) toolkit, are available.

Gordini consists of three components: performance bot-
tleneck search, performance analysis, and performance vi-
sualization modules, as shown in Figure 1. The perfor-
mance visualization module offers typical views including
line/circle diagram and timeline views for presenting per-
formance analysis results. It also provides a source code
view for presenting bottleneck search results. Visualizing
the bottlenecks directly on the source code is essential to
assist developers in performance debugging. If they are not
presented on the source code, developers have to locate the
places that trigger the bottlenecks. Therefore, developers
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Figure 1. Performance debugging process
with Gordini.

can fail to eliminate them, if the search results are not asso-
ciated with the source code.

Figure 1 shows the performance debugging process with
Gordini. First of all, developers must instrument the target
MPI programs to generate trace files. This instrumentation
can automatically be done by mpi2g, an instrumentation
tool provided by Gordini. It performs pattern matching to
replace all of the MPI routines and assignments in the pro-
gram with instrumented routines and assignments, respec-
tively. Next, they have to execute the instrumented code on
a parallel computer so that generate trace files. Giving the
trace files to Gordini provides developers helpful insights
and hints for performance improvement. According to this
information, developers are required to investigate whether
the located places can easily be modified, and if possible,
they can apply optimization techniques to the places.

Figure 2 shows an example of the source code view,
which present search results obtained by data dependence
analysis (described later in Section 3). The right-side
window presents a performance bottleneck located on the
source code. On the other hand, the left-side window
shows the same bottleneck located for every event, aim-
ing to present more detailed results. This event-level view
is motivated by a situation where optimization techniques
are conditionally applicable to a statement. For example,
suppose that an assignment is placed inside a loop body.
Then, this statement generates many computation events,
and only the first ten of them may be allowed to overlap
with a communication routine, as presented in Figure 2. To
deal with this conditional case, Gordini presents the results
on the event-level view in addition to the source code view.

In Figure 2, there is a triple-nested iteration at lines 78,
84, and 85. In this case, developers can overlap communi-
cation with computation in three steps. First, they should
separate the middle loop into two loops, a loop for the
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Figure 2. Source code view of Gordini. The
right- and left-side windows present a search
result for statements and events, respec-
tively. The right-side window indicates that
send and receive routines at lines 81 and 83
can overlap with computations at lines 86 and
89. The left-side window shows this in more
detail and enumerates overlappable events
with their corresponding lines in the source
code and their execution number associated
with each loop. It indicates that communica-
tion events generated from lines 81 and 83
can overlap with computation events gener-
ated from line 86 during from the first to the
tenth iterations of the most inner loop (line
85) under the first iterations of the remaining
two loops (lines 78 and 84).

first ten iterations and a loop for the remaining iterations.
Then, they should replace blocking routines (MPI_Send
and MPI_Recv) with nonblocking routines (MPI_Isend
and MPI_Irecv), and finally, placing waiting routines
(MPI_Wait) between the separated loops realizes overlap.

2.2 Trace File Generation

Trace files are generated for each process participating in
parallel execution. The processes record all events occurred
during the execution. Table 1 shows the recorded events
with their information classified into two groups: common
information recorded for every event and unique informa-
tion recorded for specific events. This information is the
basis for the bottleneck search module of Gordini.

A send event and a receive event correspond to an execu-
tion of a send routine and that of a receive routine. A com-
putation event corresponds to an execution of other state-
ments such as an assignment to a variable and a copy oper-

Table 1. Events and their information
recorded in trace files.

Event type Recorded information

All
Event ID, corresponding source code,
and occurrence time

Computation Read/write address

Send/receive
All arguments including source/destination
process, send/receive address, and its size

ation between buffers.

3 Performance Bottleneck Search Based on
Data Dependence Analysis

This section describes the key capability of Gordini, an
automatic bottleneck search based on data dependence anal-
ysis. Due to the space limitation, we present algorithms
for communication–computation overlap and message ag-
gregation.

3.1 Motivation for Data Dependence Analysis

All the three techniques mentioned in Section 1 have
a common characteristic. That is, they try to eliminate
communication bottlenecks by optimizing the execution or-
der of statements. Therefore, when applying these tech-
niques to a program, it is necessary to take into consider-
ation data dependence among executed statements, namely
events. Otherwise, the modified program may show buggy
behaviors due to broken dependences. Thus, data depen-
dence analysis is required to search places where the three
techniques can be applied.

Let � denote a relation that represents data dependence
among events. Data dependence from event � to event �,
� � �, can be classified into the following three types: out-
put, flow, and anti dependences [2]. For events � and � such
that � � �, the occurrence of � must be prior to that of �.

We also define relation � from a set of events to an
event. � � � represents that �� � �� � � �, where �
is a set of events and � is an event.

3.2 Search Algorithm for Communication–
Computation Overlap

In order to assist developers in communication–
computation overlap, Gordini computes a set of computa-
tion events for each communication event in a trace file.

Figure 3 describes our search algorithm for
communication–computation overlap. The algorithm
requires trace file � � ���� ��� � � � � ���, where �� repre-
sents the �-th event occurred on a process and � represents
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Algorithm for communication–computation overlap
Input: � � ���� ��� � � � � ���, a trace file with � events
Outputs: � � ���� ��� � � � � ��� and ������ � � � ���, where

�� represents a set of computation events that can
overlap with communication event �� �� � � � ��

1. � � �;
2. for � � � downto � do begin
3. if (�� is not communication event) then continue;
4. � � � � �;
5. �� � ��; �� � �;
6. for 	 � �� � to � do begin // Forward search
7. if (�� � �� ) then break;
8. Add event �� to set ��;
9. end

10. for 
 � �� � downto � do begin // Backward search
11. if (�� � ��) then break;
12. Add event �� to set ��;
13. end
14. end

Figure 3. Search algorithm for
communication–computation overlap.
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Figure 4. Search process for communication–
computation overlap.

the number of events. Then, it returns a set of commu-
nication events, � � ���� ��� � � � � ���, where �� � �
is a communication event and � �� �� is the number
of communication events in � , with its overlappable
computation events ������ � � � ���, where �� is a set of
computation events overlappable with �� �� � � � ��.

Figure 4 shows a search process for communication–
computation overlap. Because any computation event � that
overlaps with communication event � must satisfy ��� �
�� 	 ��� � ��, for communication event �� �� ���, the
algorithm computes a sequence of events �� � ����� � � � � ��
such that �	 
 � 
 �� 	 ����� � ��� 	 �

 �	 � 
 


������� � ���� 	 ��� � ����� 	 �

 �� 
 
 � ������� �
����. To compute this, the algorithm performs forward and
backward search from �� until finding event � such that
�� � � and �� ��, respectively.

Thus, the algorithm searches computation events that
can overlap with a communication event. Another ap-

Algorithm for message aggregation
Input: � � ���� ��� � � � � ���, a trace file with � events
Outputs: ������ � � � ���, � sets of aggregatable send events
1. � � �;
2. for � � � downto � do begin // Pre-processing
3. if (�� is not send event) then continue;
4. for 	 � �� � downto � do begin
5. if (�� � ��) then break;
6. Swap event �� with event ����;
7. end
8. end
9. � � �;

10. while (� � � ) do begin // Event classification
11. if (�� is not send event) then continue;
12. � � �� �;
13. �� � ��; �� � �;
14. while (� � � ) do begin
15. � � �� �;
16. if (�� � ��) then break;
17. if (�� is not send event) then continue;
18. Add event �� to set ��;
19. end
20. end

Figure 5. Search algorithm for message ag-
gregation.

proach is to search communication events that can over-
lap with a computation event. However, this opposite ap-
proach possibly results in less overlappable events because
programs usually use temporary working variables, which
cause many data dependences among computation events
due to repeated assignments to the variables. Therefore,
searching from communication events is necessary to avoid
such many data dependences among computation events.

Note here that our algorithm independently analyzes
each of trace files generated on processes. Because the algo-
rithm is based on data dependence analysis, it does not re-
quire clock synchronization of processors during trace file
generation. We discuss on the timing gap among proces-
sors’ clocks later in Section 5.3.

3.3 Search Algorithm for Message Aggregation

Our algorithm for message aggregation classifies the
send events in a trace file into groups of send events such
that all events in the same group can be aggregated into one
message send.

Figure 5 describes the algorithm, which requires trace
file � � ���� ��� � � � � ���, and then returns � sets of send
events������ � � � ���, where�� �� � � � �� is a group
of send events that can be aggregated with each other and �

is the number of classified groups.
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The algorithm mainly consists of two processing stages.
In the first stage, it alters the execution order of send events
in order to aggregate more events. After this alternation,
the algorithm generates a pre-processed trace file in which
send events are moved forward as long as data dependences
are kept. In the succeeding stage, the algorithm classifies
aggregatable send events from the head to the tail of the
pre-processed trace file.

Figure 6 shows a search process for message aggrega-
tion. For send event �� �� ���, the algorithm computes a
sequence of events ����� ����� � � � � �� such that �� � �� �
��� � ����� � ���� � ����� �� � � � ������� �
����, where �� �� � 	 � 
� is all of the events sending
to the same destination in ����� ����� � � � � �� . To compute
this, it performs forward search from �� until finding event
� such that �� � �.

During the event classification stage, the algorithm in-
vestigates whether the occurrence of send events can be de-
layed. Therefore, all events in �� must be aggregated with
the last occurred event � � ��, where � � 	 � 
. For
example, all events in �� presented in Figure 6 must be
aggregated with event �� . Note here that the pre-processing
stage enables event ���� to be grouped into ��. With-
out the pre-processing stage, �� � ���� prevents adding
event ���� to ��, because ���� is originally occurred after
����.

4 Case Studies

In order to demonstrate the usefulness of Gordini, we
applied Gordini to two sophisticated MPI programs [1, 20]
that won the first prize in NEC Cenju-3 category of Parallel
Software Contest (PSC) held in 1995 [14] and in 1996 [15].

We tried to improve their performance on an NEC Cenju-
3 [10] and an NEC Cenju-4 [9] using trace files generated
on a cluster of PCs. The reason why we use our cluster for
trace file generation is simply due to the limitation on usage
of the storage available on the Cenju-3 and Cenju-4.

Note here that using trace files for different platforms is
an uncritical problem for regular programs, which show the
same behavior for different inputs. This benefit comes from
our data dependence analysis approach that requires only
the order of occurred events.

Our cluster has a total of 16 nodes with Pentium II pro-
cessors running at 450MHz. These nodes are intercon-
nected by a Myrinet switch [3] yielding a full-bandwidth of
1.28 Gb/s. The MPI implementation used for experiments
is MPICH [6], a scalable implementation available on most
of distributed memory multiprocessor systems.

4.1 Case 1: Performance Improvement by
Communication–Computation Overlap

The first program [20] solves a system of linear equa-
tions, �
 � �, by using Gaussian elimination, where �

represents a known dense matrix of size 
�
, 
 represents
the required solution vector, and � represents a known vec-
tor of size 
. The source code is approximately in 5000
lines. In the contest, it solves several equations ranging
from 
 � ���� to ���� on a 64-node Cenju-3.

We instrumented all statements in the kernel of the code,
including MPI routines, assignments, and memory copy
primitives, but excluded uncritical statements, for example,
assignments for array initialization. Then, we executed the
instrumented program with 
 � ��� on � � �, where � is
the number of processors. The trace files are 70 MB in size
and contains approximately 1.2 million events.

Table 2 summarizes search results obtained by Gor-
dini after about 20 minutes search on a Pentium II
450MHz computer. Gordini indicates that communication–
computation overlap and message aggregation can be ap-
plied to this program, however, collective communication
is inapplicable.

According to these results, we investigated if the located
places can easily be modified, and then decided to apply
communication–computation overlap to two places. The
remaining places are left as they are, because applying the
techniques to these places is not easy due to the structure of
the source code. For example, Gordini points out that sev-
eral communication routines can be aggregated, however,
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Table 2. Search results obtained by Gordini.
Trace files are generated on 4 processors.
�, �, and � represent the number of located
events in trace files, that of located MPI rou-
tines in source code, and the time in minutes
required for search, respectively.

Gaussian DFT

Optimization technique
� � ��� � � �� ���

Results Time Results Time
� � � � � �

Comm.–Comput. overlap 922 14 22 109 22 5
Message aggregation 244 6 20 12 2 2
Collective comm. 0 0 20 0 0 1

Table 3. Execution time for Gaussian elimina-
tion program on Cenju-4, where � represents
the number of processors.

Problem
� � � � � ��

size
Execution time (s) Speedup Execution time (s) Speedup

�
Before After (%) Before After (%)
�� �� � �� �� �

128 0.014 0.014 0.0 0.023 0.023 0.0
256 0.054 0.047 12.9 0.052 0.052 0.0
512 0.351 0.240 31.6 0.152 0.135 11.2

1024 3.367 1.918 43.0 0.846 0.577 31.8
2048 29.454 15.783 46.4 7.149 4.084 42.9
4096 234.418 121.515 48.2 60.114 31.748 47.2

they are called from different loops placed in different files.
We also prevent modifying the places with short execution
time, because such places are small bottlenecks, which pos-
sibly give little improvement on the overall performance.

Table 3 shows ��, ��, and � � ���� ������, where �� and
�� are the execution times before and after program modifi-
cation, respectively, and � is the speedup on execution time.
Here, the execution time is measured for Gaussian elimina-
tion and backward substitution on the Cenju-4. Because the
original program is modified after the software contest, we
failed to measure its execution time on the Cenju-3 due to
runtime error.

Although there is no improvement when � � ���,
speedup � increases with problem size �, so that �� reduces
approximately in half when � � ���	. Thus, we obtain bet-
ter improvement as � increases. This better improvement is
derived from the modified places that emerge as larger bot-
tlenecks with the increase of �. Actually, by measuring �,
the accounting rate of the time for the modified places to the
overall time �� on � � �	, we found that � increases from
7.6% to 99.5% when increasing � from 256 to 4096. Thus,
this program has a performance characteristic that enables
reducing more execution time as problem size increases.

4.2 Case 2: Performance Improvement by Mes-
sage Aggregation

We also applied Gordini to a complex DFT program [1]
that won the first prize in PSC’96. In this contest, it solves a
problem with size 	 � 
 ��	 ��� on a 128-node Cenju-3.
The program is approximately in 1000 lines.

As we did in Section 4.1, we instrumented only the ker-
nel of this program by using mpi2g. We then generated a
trace file for 	 � �� 	�� and � � �.

As shown in Table 2, Gordini points out that
communication–computation overlap and message aggre-
gation can be applied to the program. According to these
results, we modified all the located places: 16 places for
communication–computation overlap and two places for
message aggregation. The remaining places are small bot-
tlenecks, so that we disregarded them. Note here that
message aggregation was applied to collective (gather and
broadcast) communication routines.

Table 4 shows ��, ����, ���� , ��, and speedup � �
��� � ������, where �� is the execution time before pro-
gram modification, ����, ���� , and �� are the execution time
after applying communication–computation overlap, after
applying message aggregation, after applying both, respec-
tively. Note here that the problem size of	 � 
 ��	 ��� on
� � �	 is unmeasured due to physical memory exhaustion.

When � � ��� and 	 � ��� ���, message aggre-
gation gives shorter execution time than communication–
computation overlap. In contrast, the most effective tech-
nique when � � 
� and 	 � 
 ��	 ��� is communication–
computation overlap rather than message aggregation.

This can be explained as follows. The cost for collec-
tive communications increases with �, because at least 
�� �
communication steps are required to gather (or broadcast)
data. At each step, receiver processors need to wait for
sender processors. Therefore, applying message aggrega-
tion to collective communications reduces the occurrence of
this waiting operation, realizing shorter waiting time. Thus,
message aggregation further reduces the execution time as
� increases. Furthermore, increasing � with fixed 	 de-
creases the amount of computations per processor, so that
the accounting rate of communication time to overall time
becomes larger while that of computation time becomes
smaller. In this situation, reducing communication time
is more effective than masking it with computation time,
so that message aggregation gives better improvement than
communication–computation overlap.

On the other hand, decreasing � with fixed 	 in-
creases the amount of computations per processor, so that
communication–computation overlap is expected to yield
better improvement. Actually, �� and ���� when 	 �
��� ��� indicate that it reduces the execution time by 0.022
s on � � �	, however, it fails to reduce it on � � ���.
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Table 4. Execution time for complex discrete Fourier transform (DFT) program on Cenju-3, where
� represents the number of processors. ����, ���� , and �� are the execution time after applying
communication–computation overlap, after applying message aggregation, after applying both, re-
spectively.

� � ��� ��� � � � ��� ���

�
Execution time (s) Speedup Execution time (s) Speedup

Before After (%) Before After (%)
�� ���� ���� �� � �� ���� ���� �� �

16 1.565 1.543 1.560 1.538 1.73 — — — — —
32 0.877 0.865 0.865 0.855 2.51 3.990 3.878 3.972 3.874 2.91
64 0.450 0.447 0.440 0.438 2.67 2.021 1.972 1.974 1.927 4.65

128 0.213 0.213 0.193 0.193 9.39 1.030 1.011 0.972 0.965 6.31

5 Discussion

5.1 Usefulness of Gordini

Gordini focuses on the fact that communication, as well
as load imbalance, probably tends to be sources of perfor-
mance bottlenecks on current distributed memory multipro-
cessor systems. Therefore, the performance of programs
written by MPI beginners can probably be improved by the
three search functions of Gordini, because such programs
usually take little care to performance.

In contrast, MPI experts carefully write programs to
achieve higher performance. However, our case studies
show that Gordini also can improve the performance of
sophisticated programs. This improvement indicates that,
even MPI experts can leave performance bottlenecks unad-
dressed, because earlier tools focus only on statistical per-
formance data such as the execution time and the amount of
messages. Such statistical data never makes developers be
certain whether all bottlenecks are already eliminated. On
the other hand, Gordini focuses on data dependence so that
locates every place where the three optimization techniques
can be applied. Thus, the advantage of Gordini is to enable
developers to prevent leaving performance bottlenecks from
the viewpoint of data dependence analysis.

When using earlier tools, which perform statistical anal-
ysis on performance data, it is a time consuming task to lo-
cate the places where communication–computation overlap
is applicable, because this technique masks communication
time with computation time as long as data dependence is
kept. Such statistical tools do not consider data dependence,
so that developers have to search overlappable statements
in the source code. In contrast, Gordini directly locates
such places in the source code, so that it frees developers
from searching them. However, developers must investi-
gate whether they actually can overlap the located places,
as described later in Section 6.

The statistical analysis approach does not effectively

work for programs where all of statements spend uniformly
the same execution time, because it probably present uni-
form graphical views for such programs, so that developers
are unable to locate performance bottlenecks. In the worst
case, they may believe that there is no performance bot-
tleneck. Gordini can deal with such programs because it
focuses on data dependence rather than statistical data.

However, our data dependence analysis locates perfor-
mance bottlenecks without regarding the execution time.
Therefore, it can direct developers to the places with short
execution time, where only little improvement can be
achieved. Actually, in Section 4.1, we found that there is
almost no improvement on execution time when � is a small
value (� � ���%). A similar situation occurs in Section 4.2,
which shows less improvement due to short communication
time. Therefore, we think that the combined use of data
dependence and statistical data analyses is essential to effi-
ciently improve the performance of parallel programs. For
example, developers can locate performance bottlenecks by
data dependence analysis, and then they can give priority
to the located bottlenecks by sorting their execution time
through the use of statistical data analysis.

5.2 Automatic Search Approach

Gordini frees developers from performance bottleneck
search. This capability classifies performance data into
two groups, useful data relating to performance bottlenecks
and the other remaining data, so that enables presenting
only useful data to developers. For example, for the Gaus-
sian elimination program presented in Section 4.1, Gor-
dini shows only 20 lines of the source code, 14 lines for
communication–computation overlap, and 6 lines for mes-
sage aggregation, from trace files containing 1.2 million
events. Thus, automatic search approach is necessary to
present less but useful performance information to devel-
opers.

Because the current implementation of Gordini holds the
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entire of trace files in order to search performance bottle-
necks, it has a limitation on the size of trace files. For ex-
ample, a computer with 2 GB of main memory can deal
with the maximum of 22 million events. However, this lim-
itation will be eliminated because the algorithms presented
in Section 3 requires a portion of trace files so that allows
the on-the-fly computation of bottleneck search.

Generally, the size of trace files increases with that of
problems and the number of processes. Therefore, satisfy-
ing requirement R1 presented in Section 1 is essential to
ensure the performance improvement of parallel programs.

5.3 Clock Synchronization

Any tool based on trace files should consider the timing
gap among processors’ clocks because this gap causes dis-
crepancies, for example, the occurrence time of a receive
event is prior to that of a matching send event. Although
MPI provides a wall clock mechanism (MPI_Wtime), it
is not precise enough for event based tools where an event
corresponds to an execution of a statement. This timing gap
is a trivial issue for Gordini, because its data dependence
analysis requires only the occurrence order of events.

However, if a wall clock mechanism removes this gap
in the future, our analysis can be augmented by exploit-
ing the occurrence time of events. For example, defining
a wait event from the occurrence of a send event and that of
a matching receive event may realize more useful analysis
based on wait events.

6 Related Work

Gordini currently needs trace files generated by program
execution. In contrast to this postmortem approach, Watan-
abe and Yuasa [21] employ static approach for communica-
tion optimization in a data parallel compiler. They present
a compilation technique that realizes communication–
computation overlap without program execution. Their
technique realizes communication–computation overlap by
moving assignments, however, it assumes that overlappable
assignments and communications are placed in the same
block, so that it is unable to overlap communication with
computation across different blocks. On the other hand,
Gordini is based on postmortem analysis, which is inde-
pendent of the structure of the source code. Overlapping
communication with more assignments is essential to yield
higher performance, because communication routines gen-
erally require more execution time than assignments do.

Other data parallel compilers [4, 7, 16, 19] also perform
communication optimization including message aggrega-
tion and collective communication. However, most of them
focus on a single nested loop because optimization across
different loops is a complex and expensive problem. To the

best of our knowledge, only Hall et al. [7] presents a strat-
egy for interprocedural optimization but they manually ap-
plies optimizations according to the strategy, because they
have not implemented interprocedural optimizations in their
compiler. Thus, most of static approaches are based on local
optimizations, where optimizations are restricted to a single
block/loop in the source code, mainly due to the complexity
and expense of global optimizations such as interprocedural
optimizations.

Gordini currently considers data dependence but no con-
trol dependence. Therefore, developers have to investigate
the located places whether they are actually overlappable.
For example, suppose that Gordini points out that statement
S1 is overlappable with communication routine C. If the
program is written as if-S1-else-S2, then developers have
to check if S2 is also overlappable with routine C. If there is
data dependence between S2 and C, developers are required
further to check if the branch always executes S1. Watan-
abe and Yuasa address this problem by restricting the search
space into a block, where no control dependence exists.

Summarizing the above discussions, postmortem ap-
proach locates more overlappable computations than static
approach does, so that yields higher performance. However,
it requires developers to investigate if the located bottle-
necks have control dependence, while static approach guar-
antees valid optimizations by means of rigorous analysis.
Therefore, postmortem approach is effective for developers
to give a helpful advice for deterministic applications that
show regular behavior in every program execution.

7 Conclusions

We have presented the design and implementation of
Gordini, which is capable of locating places in the source
code where typical optimization techniques can be applied.
Gordini performs data dependence analysis on trace files
and supports three techniques for communication bottle-
necks: communication–computation overlap, message ag-
gregation, and collective communication. Gordini guides
developers to performance bottlenecks in the source code
and presents a specific technique for their elimination.

In case studies, Gordini successfully assists us in im-
proving the performance of two sophisticated MPI pro-
grams that won the first prize of parallel software contests.
Therefore, we believe that our automatic search approach
based on data dependence analysis is useful to improve the
performance of message passing parallel programs.

In particular, our approach is effective for MPI programs
with the following three characteristics.

Regular behavior: Postmortem approach is effective for
deterministic applications that show regular behavior
in every program execution.
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Communication bottlenecks: Because we currently focus
on communication bottlenecks, our approach can im-
prove applications with communication bottlenecks
but needs other techniques to improve applications
with computation or input/output bottlenecks.

Global bottlenecks: In contrast to the above two require-
ments, this clarifies the difference between the effec-
tiveness of postmortem approach and that of static ap-
proach. Postmortem approach is effective for global
bottlenecks, namely performance bottlenecks across
different blocks, as well as local bottlenecks, namely
performance bottlenecks within a single block.

Future work includes the development of performance
prediction method for guiding developers to places only
with significant improvement. This method is essential
to prevent misleading developers into wrong modification
with performance loss. Furthermore, coupling Gordini with
static techniques could provide more rigorous search. For
example, control dependence can be addressed by perform-
ing rigorous data flow analysis at the instrumentation time.
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