IEICE TRANS. INF. & SYST., VOL.E87-D, NO.4 APRIL 2004

967

[PAPER

Evaluation of Performance Prediction Method for Master/Slave

Parallel Programs

Yasuharu MIZUTANI'®, Student Member, Fumihiko INO, and Kenichi HAGIHARAY, Members

SUMMARY This paper describes the design and implementation of
a testbed for predicting master/slave (M/S) programs written using Mes-
sage Passing Interface (MPI) programs. The testbed, named M/S Emulator
(MSE), aims at assisting developers in evaluating the performance of M/S
programs and dynamic load-balancing strategies on clusters of PCs. In
order to realize this, MSE predicts the communication time by using a re-
alistic parallel computational model, an extension of the LogGPS model.
This extended model improves the prediction accuracy on a large number
of processors, because it captures the master’s bottleneck: the overhead re-
quired for retrieving arrival messages from the slaves. Current MSE also
employs a best effort emulation method for predicting the calculation time.
In our experiments, MSE demonstrated an accurate prediction on clusters,
especially on a larger number of nodes. Therefore, we believe that our
extended model enables us to analyze the scalability of the M/S program
performance.

key words: performance prediction, master/slave paradigm, load balanc-
ing, message passing, parallel computational model

1. Introduction

With the rapid advances in cluster and grid computing [1],
[2], high performance computing systems are increasing
their heterogeneity of processors and interconnects. One
adaptive programming paradigm for these heterogeneous
systems is the master/slave (M/S) paradigm, where a sin-
gle master manages task assignment to slaves and gathers
computed results from the slaves. The M/S paradigm al-
lows us to develop high performance programs by providing
a dynamic load-balancing mechanism. For example, this
paradigm can effectively parallelize some major comput-
ing strategies such as alpha-beta search, divide-and-conquer,
and branch-and-bound algorithms [3]. Although M/S pro-
grams are effective on heterogeneous systems, they loose
this effectiveness if the master is responsible for excessive
slaves. That is, the programs significantly decrease their
performance due to the resource contention at the master.
Therefore, performance prediction is useful to investigate
the optimal number of slaves as well as to develop sophisti-
cated M/S paradigm.

The goal of this work is to develop a performance pre-
diction system for the performance study of M/S programs
on clusters. Our target programs include not only M/S pro-
grams where processing workload can be dynamically deter-
mined but also sophisticated M/S programs where the mas-

Manuscript received June 20, 2003.
Manuscript revised October 20, 2003.

"The authors are with the Graduate School of Information Sci-
ence and Technology, Osaka University, Toyonaka-shi, 560-8531
Japan.

a) E-mail: mizutani @ist.osaka-u.ac.jp

ter can be dynamically generated, migrated, and structured
in a hierarchical manner [4]-[7].

To achieve this goal, we have developed a testbed
named Master/Slave Emulator (MSE) for Message Passing
Interface (MPI) programs [8] by incorporating the follow-
ing three design aspects: (D1) a low-overhead prediction by
using a realistic parallel computational model; (D2) a per-
formance saturation point modeling by adapting the used
model; and (D3) reproduction of dynamic behavior. For de-
sign aspect (D1), we have selected the LogGPS model [9],
which abstracts the communication by MPI. To analyze the
performance saturation of M/S programs, we have adapted
LogGPS to the M/S paradigm by determining the master’s
overhead required for retrieving arrival messages from the
slaves. Finally, design aspect (D3) allows us to evaluate per-
formance of novel dynamic load-balancing strategies since
MSE reproduces the original behavior of programs by exe-
cuting all program code. We are currently using emulation
approach for (D3).

The rest of this paper is organized as follows. Sec-
tion 2 presents some related work and summarizes problems
to predict M/S program performance. Section 3 presents de-
sign aspects for the accurate prediction of M/S program per-
formance while Sect. 4 gives the details of MSE based on
the design. Section 5 presents some experimental results on
a 64-node cluster. Finally, Sect. 6 concludes this paper.

2. Related Work

To predict parallel program performance, a number of tools
have been proposed in the past.

MicroGrid [10] aims at providing a virtual grid infras-
tructure for the study of complex dynamic behavior of grid
applications. To simulate network behavior, it uses a de-
tailed network simulation including TCP congestion con-
trol. However, it requires an unpredictable large amount of
computational effort [10] due to concentration of messages
at the master. Therefore, for M/S programs, where messages
gather at the master, detailed simulation approaches[10],
[11] perturb the behavior for task distribution of the mas-
ter, so that can drop the prediction accuracy. Thus, low-
overhead approaches are suitable for M/S programs, espe-
cially on clusters with high-speed interconnects, where the
master can pass messages frequently.

One low-overhead approach is to use a realistic par-
allel computational model such as the LogP [12] family of
models [9], [13]-[15]. LogP abstracts the communication of

968
Sendl (k=3) Send2 (k=5) ¢ 1-byte message
, 10
L1 3G i ¢

Ps o T L0}

e [0 RN B i+ L 0]

‘ ; e T2 —ple— T3 —>e— T1 ——!

Fig.1 An example of messages under the LogGPS model (S = 4).

messages by using four parameters:

e L: the latency, incurred in sending a message from its
source processor to its target processor.

e 0: the overhead, defined as the length of time that a
processor is engaged in the transmission or reception
of each message.

e g: the gap between messages, defined as the minimum
time interval between consecutive message transmis-
sions or consecutive message receptions at a processor.

e P: the number of processors.

LogGP[13] incorporates long messages into LogP by
adding the following parameter:

e G: the gap per byte for log messages, defined as the
time per byte for a long message.

This model has been validated with a Gaussian elimination
program [16] and a wavefront application [17] within 7% er-
ror. Furthermore, in order to capture the communication by
MPI, LogGPS [9] abstracts messages in synchronous mode
and in multiple packets by adding two parameters to LogGP.

e §: the threshold for message length above which syn-
chronous messages are transmitted.

e s: the threshold for message length above which mes-
sages are sent in multiple packets.

Figure 1 shows an example of two messages, Sendl and
Send2, under the LogGPS model, where S = 4. When
k < S, P, sends an asynchronous message (Sendl) with
the communication cost 7;. When k > S, P, has to syn-
chronize to P, (Send2). In addition to cost Ty, the commu-
nication cost is defined by summing up the time to establish
synchronization, cost 7, and T3.

On the other hand, LoPC [14] and LoGPC [15] address
contention issue by adding a parameter (C), which repre-
sents the cost of contention. LoPC models processor con-
tention [15] while LoGPC models processor and network
contention.

Thus, many works have validated the accuracy of the
LogP family and demonstrated accurate performance pre-
dictions for parallel programs. However, few works except
CLUE [18] have validated these models with M/S programs.
CLUE predicts the performance of an M/S program by exe-
cuting the program and modeling communication like LogP.
Although CLUE shows accurate predictions on a 5-node
SMP cluster, it leaves unclear whether its prediction is ac-
curate enough to investigate the optimal number of slaves

IEICE TRANS. INF. & SYST., VOL.E87-D, NO.4 APRIL 2004

as well as to analyze the behavior of sophisticated M/S pro-
grams.

Another approach for predicting the performance of
M/S programs is to use a theoretical analysis specific to the
M/S paradigm. Although this approach is helpful in deter-
mining the number of slaves, it requires strict assumptions
like that all tasks assigned by the master must be of same-
size [19] and that workload must be a representative distri-
bution such as an exponential distribution [20], [21].

3. Design Aspects for Predicting Master/Slave Pro-
gram Performance

This section presents design aspects for predicting M/S pro-
gram performance and developing a system for the study of
sophisticated M/S programs.

3.1 Low-Overhead Prediction for Accurate Performance
Prediction

In M/S programs, the master’s performance can determine
their overall performance. Therefore, to realize an accurate
prediction of M/S program performance, we have to predict
the master’s behavior in precise. From the discussions in
Sect. 2, we have decided to use a realistic parallel computa-
tional model such as LogGPS. We have selected LogGPS
because it presented an accurate prediction for data parallel
programs written by MPI [9].

Note here that LogGPS captures no network con-
tention. Although other contention-based models such as
LoPC[14] and LoGPC[15] can be used, we have selected
contention-less LogGPS since it has shown to be accurate
on our cluster, as presented later in Sect.5. Furthermore,
LogGPS has two advantages to LoPC and LoGPC when net-
work contention has little effect on the overall performance.
First, LogGPS is simpler than LoPC and LoGPC, so that
causes less perturbation on the master. Second, the Log-
GPS parameters depend only on the target hardware while
the LoPC/LoGPC parameter, C, depends on both the target
hardware and software. For example, LoPC and LoGPC re-
quire application-specific parameters such as the message
injection rate and the fraction of messages determined for
every pair of processors. Deriving these parameter values is
complicated for some sophisticated programs [4]-[7] since
such programs can dynamically generate and migrate the
master.

3.2 Saturation Point Modeling for Scalability Analysis
There exist two performance issues on the scalability analy-

sis for M/S programs.

(I1) Detecting the optimal number of masters for given pro-
Cessors.

(I2) Detecting the optimal number of processors for given
set of tasks.

For issue (I1), we can successfully detect the optimal

MIZUTANI et al.: EVALUATION OF PERFORMANCE PREDICTION METHOD FOR MASTER/SLAVE PARALLEL PROGRAMS

w
[
=)

Méasurea ——
LogGPS o - 1

o]

W

(o]
T

[\

(=]

(=]
i

._.

o

(=]
T

Execution time (s)
w &

S S

-9

X

“i.\

0 8 16 24 32 40 48 56 64
Py, : Number of masters
(a) P=64

el

240 T

I Measured —e—

200 X | LogGPS - |
160 \
120

0 8 16 24 32 40 48 56 o4
P: Number of processors
(b) P, =1

(o]
(=]
T

Execution time (s)

N
o

(]

Fig.2 Execution time for parallel mandelbrot set explorer based on M/S
paradigm. P, of P processors work as the master while remaining P — P,
processors work as the slaves.

Table 1 RTTp: Round trip time for 1-byte message on Fast Ethernet
with P processors.
MPI RTTp (us) o*: Increasing
implementation P=2 P=16 P=64 rate (%)
MPICH [22] 144.0 152.1 185.8 29.0
LAM [23] 125.8 147.1 194.8 54.8
MPICH-SCore [24] 95.4 97.6 99.2 3.98

* o = (RTTea/RTT — 1) - 100

number of masters by using the LogP family models as
shown in Fig.2 (a). For issue (I12), we have to use the pa-
rameter values derived from the same number of processors
as the target hardware. Otherwise, the LogP family fail to
produce the performance curve as shown in Fig. 2 (b). This
failure is a critical problem when we analyze the scalability
of M/S program performance. In the following, we discuss
why we have to derive it like this and how we have addressed
this problem.

Table 1 shows the round trip time (RTT) measured on
a Fast Ethernet network by using three MPI implementa-
tions. Note here that P — 2 of P processors stay idle while
the remaining two processors exchange a 1-byte message as
shown Fig.3. Although two common processors transmit
messages for all P, RTT increases with P in Table 1. This
increase can strongly effect on the scalability analysis for
M/S programs since their performance can be determined
by the RTT between the master and the slaves. For exam-
ple, performance prediction for 64 processors can result in
29.0% error on MPICH [22], if we use the parameter values
derived from P = 2. Therefore, performance prediction for
P processors requires the parameter values derived from the

969

Round trip time

B 21 Time
— L
EZIMPI_Send

P

2 > [CIMPI_Recv with

- MPI_ANY_SOURCE

P ’ Wait a 1-byte message ‘

3 >
P } Other processors

P - stay idle

Fig.3 Measurement of RTT.
same P.

However, smaller P is desirable for the scalability anal-
ysis. To estimate the RTT on a large P from a small P,
we have adapted LogGPS by representing the overhead,
0 = 0’ + Ok, as a linear function of P: 0 = o;, + 0, P + Ok,
where k is the message length; o’ and O are LogGPS con-
stants [9]; and o} and o) are additional constants derived
from two values of 0’ measured on a pair of small Ps (de-
scribed in Sect. 5).

Our linear representation for the overhead is appropri-
ate from the following reason. The increase of RTT has
no relation to network contention since the message length
and the communication pattern are fixed for all P during the
RTT measurement. It is due to the increase of the over-
head required for retrieving arrival messages. For exam-
ple, MPICH’s MPI Recv calls a select system call and
Linux/FreeBSD’s select retrieves the arrival-state sockets
by linear search. Since every processor has P — 1 sockets, o
increases with P, and thereby RTT increases with P.

3.3 Reproduction of Dynamic Behavior for Performance
Study

To provide an accurate prediction for sophisticated M/S pro-
grams, we have to capture the dynamic behavior of pro-
grams influenced by their load-balancing strategies, because
these programs dynamically change the behavior for good
load balancing [4]-[7].

We currently use an emulation approach to capture this.
That is, current MSE executes the target program without
omitting any portion of program code. Although a few per-
formance prediction systems omit some code by compiler
analysis [25] for the programs whose behavior is statically
determined, we avoid this omission since sophisticated M/S
programs contain a code for load balancing, and distinguish-
ing the code automatically from given programs brings hard
issues. For example, such programs perform task queue-
ing [5] as well as exchange workload information in addi-
tion to the original calculation and communication. There-
fore, we have decided to use a run-time emulation approach
to capture the dynamic behavior of the target programs.

The emulation approach also contributes to the pre-
diction accuracy especially on heterogeneous systems.
Since our target programs dynamically determine task
distribution, static approaches[19] and post-mortem ap-
proaches [9],[13],[16] can fail to simulate the precise task
assignment on the target system. This failure can lead to in-

970

accurate prediction on heterogeneous systems, because the
master can assign a heavy task to a slow slave through a low
bandwidth network. Thus, the emulation approach is the
simplest method for predicting the precise task assignment
on the target system.

4. Master/Slave Emulator (MSE) for MPI Programs

In this section, we present the implementation of MSE. Fig-
ure 4 shows the process of performance prediction with
MSE. To predict performance, MSE requires two inputs:
(1) an executable binary file, generated by the compilation
of the target program and the linkage with the MSE library,
and (2) a configuration file for the target hardware, includ-
ing the LogGPS parameters for interconnects and the rela-
tive speed parameters for processors. Thus, MSE requires
no program modification.

During parallel execution, MSE emulates the execu-
tion on the target hardware. Figure 5 illustrates an exam-
ple of emulation process, where processor P, transmits a
1-byte message to P, by MPI_Send. By using the cost def-
inition in [9], P; first estimates the completion time of the
MPI_Send, Ty, and the arrival time of the message, T,. After
this, P, concatenates the value of T, to the original mes-
sage, transmits them to P,, and then keeps idle until time
Ts. On the other hand, P, splits the value of T, from the
arrival message and estimates the completion time of the
matching MPI_Recv, T, by using the values of 7, and 7 [9],
where T} denotes the time when P, calls the MPI_Recv. On
times 7, and T,, P; and P, return from the MPI_Send and
the MPI_Recv, respectively.

As shown in Fig.5, current MSE requires emulation
overhead X, or the costs for estimating the completion time
and transmitting the arrival time. Therefore, MSE requires
higher speed network than target network to encapsulate X

Compilation and linkage Parallel execution

MPI E bl on P processors
xecutable
Prograg]_'o_’ binary file ”(5

> MSE] [Configuration file :|[Predicted
2 library] | for target hardware: time
MPI library

- LogGPS parameterfs;ff
- - Relative speed for -
processors

Fig.4 Performance prediction with MSE.

Tj:Call Tj: Return T, :Message arrival

it O i [, —»ie O » -
P i Ti EJ Emulated MPI_Send
XA me | [-]Real MPI_Send
sy, Emulated MPI_Recv
[JReal MPI_Recv
P, % ummy loop
~# Emulated message
, : —» Real message
T Call T;: Return

Fig.5 1-byte message passing emulation.

IEICE TRANS. INF. & SYST., VOL.E87-D, NO.4 APRIL 2004

in Ts—T for sending and 7,,— T for receiving. Here, Tx—T’
and T, — T, represent the overhead of emulated MPI_Send
and MPI Recv, respectively. When X exceeds T — T or
T, — T;, the following two issues occur.

(1) Consecutive events are delayed. This delay causes dif-
ference of the timing of events occurrence between em-
ulated and measured execution. Then, MSE must ad-
just predicted execution time in order to cancel the dif-
ference.

(2) This delay differs among processors, because the num-
ber of messages differs among processors due to the
dynamic task assignment in M/S program. To keep the
correct timing of message sending and arriving, MSE
must synchronize the delay among processors.

Although the network speed restriction is a problem for per-
formance prediction system, we think that we can resolve
this problem by applying two techniques used in CLUE [18]
to MSE. One is a virtual time mechanism and the other is a
distributed discrete event simulation. The virtual time mech-
anism resolves the issue (1), because the mechanism man-
ages predicted execution time apart from the actual time.
The distributed discrete event simulation resolves the issue
(2), because the simulation synchronizes virtual time among
all processors.

5. Experimentation

To validate MSE on its prediction accuracy and emulation
overhead, we applied it to two M/S programs: a paral-
lel mandelbrot set explorer (MASE) for fractal visualiza-
tion and a range of motion simulator (ROMS) for total hip
replacement surgery [26], both solve a set of independent
tasks whose workload is dynamically determined. A task of
MASE corresponds to test whether a point on the complex
plane is included in the mandelbrot set while that of ROMS
corresponds to detect whether a three-dimensional rotation
causes a collision between the femur and the artificial joints.
We implemented them in three variations: single (SI), mul-
tiple (ML), and dynamic (DY) master implementations (de-
scribed later in Sect. 5.3).

We used a 64-node cluster with Pentium III 1 GHz
processors for experiments. Each node in the cluster con-
nects to Myrinet[27] and Fast Ethernet switches, yield-
ing full-duplex bandwidth of 2 Gb/s and 100 Mby/s, respec-
tively. In the experiments, we emulated MPICH programs
on Fast Ethernet by executing MPICH-SCore [24] programs
on Myrinet with the same P processors.

Table 2 shows the LogGPS parameter values for
MPICH on Fast Ethernet, derived from 8 processors. Here,
we only show the values for asynchronous messages since
MASE transmitted no synchronous message. Besides, we
disregarded g since g is encapsulated in o on current ma-
chines [9],[15]. To derive o, and o, we first derived two
LogGPS constants, o’ on P = 2 and P = 8, in accordance
with [9], then solved a pair of equations in o, and o vari-
ables as follows:

MIZUTANI et al.: EVALUATION OF PERFORMANCE PREDICTION METHOD FOR MASTER/SLAVE PARALLEL PROGRAMS

Table 2

971

LogGPS parameter values for MPICH on Fast Ethernet, derived from eight processors. P

and k represents the number of processors and the length for messages, respectively.

Lus) G (us) o for MPI_Send (us) o for MPI_Recv (us)
MSE 50.0 0.0268 12.1+0.182P + 0.0708k 12.1 +0.182P + 0.0722k
LogGPS ’ ’ 13.0 +0.0706k 13.0 +0.0723k
240 T T T : : : 70 ; ; ;
~ { Measured —e— L Measured —e—
;200 L ; ; i : I\ésg 5 | @6()[] MSE —8—
! LogGPS X || 0 §0 Pl LOGGPS --eeeee 4
E 160 1 : 2 50 LogGPS
- = 40
g1 g0
§ 80 § 20
X 40 4
s ! Q10
0 i i i i 1 i 1 0
0 8 16 24 32 40 48 56 64 1 4 16 64 256 1K 4K
P: Number of processors T: Number of tasks per an assignment
(a) MASE-SI Fig.7 Measured and predicted execution time for different task
250 T — . granularity (MASE-SI).
225 b i) Measured —e— |
< 200 t \ MSE —8— |4
En1 \ﬁ\ LoeGRS —H— 240 r ' ' '
é 125 —~200 [; ; Measured MSE |_|
= 100 } ; L Others: [
§ 75 P h g 160 | MPLRecv: []
g 50t N = 20k S S MPI_Send: 77272 W2 |
25 § | ; ; ;
0 i . . : § 80 biiir i f f oo .
0 8 16 24 32 40 48 56 64 % L - - e ,-
: Number of processors 0] e
(b) ROMS-SI 4 8 16 32 64

Fig.6 Measured and predicted execution time for single master
implementation (SI).

12.48 (us),

0y +0, -2
{ 13.57 (us).

’ ’
o, +o0,-8

As shown in Table 2, the coefficient of P has signifi-
cant influence on o. For example, for k = 1, the value of o
doubles when that of P increases from 2 to 71 processors.

5.1 Validating Prediction Accuracy

To validate the saturation point modeling of MSE, we first
predicted the performance with the minimum task granu-
larity, where the master became a performance bottleneck.
Figure 6 shows the measured and the predicted execution
time for the SI implementation. MSE shows an accu-
rate prediction within 3% and 10% errors for MASE and
ROMS, respectively. It also shows the performance satura-
tion point in precise, so that the optimal P obtained by MSE
agrees with the measured results: P = 28 and P = 36 for
MASE and ROMS, respectively. On the other hand, Log-
GPS fails to show the performance curve, so that drops its
accuracy as P increases. This failure can be explained as
follows. Since MASE performs 1,048,576 round trip com-
munications between the master and the slaves, the mas-
ter takes at least 20 - 1,048,576 us. Substituting P = 8§
and P = 64 to o (see Table 2) and subtracting them gives
1,048,576 -2-0.182 - (64 — 8)/10° = 21.4s, or the contribu-

P: Number of processors

Fig.8 Breakdown analysis of master’s execution time (MASE-SI).

tion of our linear overhead when P = 64. This value is close
to 21.2s, or the difference between the measured and the
LogGPS time when P = 64. Thus, our linear overhead rep-
resentation is necessary for the scalability analysis for M/S
programs since it can significantly effect on the performance
on large P.

We next analyze MASE in detail. Figure 7 shows the
measured and the predicted results on P = 64 with differ-
ent task granularity, 7, where the master repeats the send
and the receipt of 8 and 4T + 8 byte messages, respectively.
In Fig. 7, although LogGPS has shown to be inaccurate for
T = 1, it becomes accurate as T increases. The above analy-
sison T = 1 explains this improvement. In MASE, the mas-
ter transmits 1,048,576/T messages, so that the difference
between MSE and LogGPS becomes 21.4/T s. Therefore,
LogGPS raises its accuracy with the increase of 7.

Figure 8 shows the breakdown of the master’s execu-
tion time. We can see that MSE estimates the total time
in precise for all P, however, with the increase of P, it
estimates longer time for MPI_Send and shorter time for
MPI_Recv. This discrepancy is due to our simplified model,
which assumes that both the send and the receipt overheads
have the same o’. That is, to simplify our model, we have
made the assumption, but the actual send overhead contains
no cost proportional to P. Our assumption works fine for

972

M/S programs where assigned tasks and their results are
unredirected. However, for M/S programs where the mas-
ter migrates before receiving the results of assigned tasks,
the total number of the master’s MPI_Send differs to that of
its MPI_Recv, so that we have to avoid this simplification.
One solution for this is to distinguish o], and 0, between the
send and the receipt overheads.

5.2 Evaluating Emulation Overhead

We now evaluate the emulation overhead of MSE. Figure 9
shows the account rate of the emulation overhead on the
master, R = X/(Ts — T;) for MPI_Send and R = X/(T, — T))
for MPI Recv (see Fig.5). When R < 1, the emulation over-
head is low enough for an accurate prediction since the pre-
dicted time encapsulates the overhead. In Fig. 9, the value
of R ranges from 0.20 to 0.94. Therefore, the emulation
overhead is low enough to provide accurate predictions.

R of MPI_Recv (for 4T + 8 byte messages) increases
as P decreases in Fig.9 (a) and comes close to 1.0 as T in-
creases in Fig.9 (b). The reason for this is the increase of
the synchronization time of MPI_Recv, W, that both X and
T, — T, contain. During this time W, the master waits for
the slaves to request a task. For example, by probing the
arrival messages in MPI_Recv, we obtained W = 3.38 us
for T = 1 and P = 64 while W = 129ms for T = 4K
and P = 64 per one MPI_Recv on the average. Thus, R
increases when the master waits for the slaves’ requests.
However, R does not go over 1.0 when the overhead of
Myrinet is smaller than that of Fast Ethernet. By using the
LogGPS parameters on P = 64, the account rate without
the synchronization time, R = (X - W)/(T, - T, - W) =

! ; 'MPI_Send -
o 08F : : MPI_Recv —— |4
s f
= 061 i t ! .
8
g 047 Q::Nw\' U 1
< | t&ttgzﬁ:%:ﬁ:ﬁ:g:g
& 02t
0 i H i L i i
0 8 16 24 32 40 48 56 o4
P: Number of processors
()T =1
1 . . , .
MPI_Send —o— ’/e/e/e/e—é—*
o 0.8 FL_MPI Recv —— .
= 06
3
S 04t /]
< . ‘»—0—0—4//\
& 02 ¢ * NG >
0 i I
1 4 16 64 256 1K 4K
T: Number of tasks on an assigment
(b) P =64

Fig.9 Account rate of emulation overhead on the master for MASE-SI.

IEICE TRANS. INF. & SYST., VOL.E87-D, NO.4 APRIL 2004

(2.9 +0.00767k)/(12.1 + 0.182 - 64 + 0.0722k), approaches
to 0.11 as k increases, where X — W and T, — T, — W cor-
respond to the overhead for MPI_Recv on Myrinet and Fast
Ethernet, respectively.

On the other hand, although the master repeatedly
sends the same 8-byte messages for all P and T, Fig9 (b)
shows an irregular behavior for MPI_Send where 512 < T <
2K and P = 64. This is due to the flow control of MPICH-
SCore since the increase of X causes that of R. In this case,
the master receives all unexpected 47 +8 byte messages until
it successfully allocates the send buffer for the 8-byte mes-
sage.

5.3 Validating Dynamic Behavior Emulation

We applied MSE to two sophisticated variations of MASE.
One is the ML implementation, in which each of P,, mas-
ters has P/P,, responsible slaves, where 2 < P,, < P/2.
The other is the DY implementation, in which the number
of masters can change during program execution. In DY,
every master can split its responsible tasks and slaves in two
groups and assign one group to a responsible slave. The as-
signed slave then becomes the master of the half slave and
works as a secondary master until it completes the assigned
tasks. The splitting and merging of the master are triggered
by the statistics of the slaves’ wait time from the request for
a task until its assignment. To validate the emulation ac-
curacy of the dynamic behavior of DY, we selected MASE,
because the master becomes busy and tends to generate new
masters compared to ROMS.

Figure 10 (a) shows the results for ML on P = 64. In
Fig. 10 (a), although the measured time appears as an irreg-

50 : : : r - .
__ 45 | Measured —e— | S S— i
Z 40 MSE —8— ;

.

0 4 8 12 16 20 24 28 32
Pn: Number of masters
(a) ML: Multiple master implementation

Execution time
—_—— N N WD

9%
SULOoOULOWLNO WL
- T T

240 , , : : ,
. : ‘| Measured —o—
2 200 Q- MSE —&— |
£ 160 | \
£ 120
5 80
g 40 R n-a T

0 . N .

0 8§ 16 24 32 40 48 56 64
P : Number of processors
(b) DY: Dynamic master implementation

Fig.10 Measured and predicted execution time for MASE (T = 1).

MIZUTANI et al.: EVALUATION OF PERFORMANCE PREDICTION METHOD FOR MASTER/SLAVE PARALLEL PROGRAMS

Fig.11 Mandelbrot image expolored by MASE.

—— Ry 5"

Rp Rp

Al

(a) Measured (b) MSE

Fig.12 Comparison of task distribution on MASE-DY.

ular graph, MSE presents an accurate prediction within 9%
error. This good accuracy comes from our emulation ap-
proach since it realizes almost the same task distributions
as the original. Actually, the measured time increases when
P = 16 due to the splitting of tasks with imbalanced work-
loads.

Next, Fig. 10 (b) shows the results for DY, in which pro-
cessors behave in a more complicated way. MSE also shows
a similar performance to the measured results, so that it en-
ables us to conclude that ML gives the best performance
of below 20s if we can detect the optimal number of P,,.
Thus, MSE have demonstrated the irregular performance of
M/S programs, which is not easy for static and post-mortem
approaches.

Finally, we compare measured and emulated task dis-
tribution with 64 processors on MASE-DY. Figure 11
shows a mandelbrot image explored by MASE-DY, and
Fig. 12 shows a task distribution map, which illustrates
which master takes responsibility for which part on the man-
delbrot image. In Fig. 12, a region bordered by horizontal
black line corresponds to a set of tasks assigned to a master.

Since this program manages the splitting of masters ac-
cording to the slaves’ wait time, significantly affected by the
master’s communication overhead, the task distribution map
is also affected by the accuracy of prediction. This accuracy
is defined over the distribution map in terms of two points:
(1) the horizontal position of lines, representing when a new
master is splitted from which master; (2) the number of
lines, representing the number of masters.

Figure 12 (a) and Fig. 12 (b) show a similar distribution
in region Rp, however, fail to show it in region Ry . In region
Rp, the difference of horizontal position was within a few

973

pixels (although the size of the mandelbrot image was 1024
x 1024 pixels), and there was no difference on the number
of lines. On the other hand, region Ry lacks the line due
to no occurrence of the master splitting. However, this lack
can be acceptable because this splitting was occurred at the
lowest 4-th level, and the other splitting at the higher level,
which determine the performance, is reproduced as shown
in Rp. Thus, the predicted time was accurate as shown in
Fig. 10 (b), and thereby we think that this distribution is not
exactly as the real one, but similar enough to predict the
execution time.

Consequently, MSE accurately predicts the execution
time of sophisticated M/S programs as well as emulates the
behavior of the programs, and MSE is useful to evaluate
sophisticated M/S programs.

6. Conclusion

In this paper, we have shown the following three contribu-
tions (C1), (C2) and (C3) for accurate prediction of M/S
program performance.

(C1) We presented three design aspects: (D1) low-overhead
prediction by using a realistic parallel computational
model, (D2) a performance saturation point modeling
by adapting the used model, and (D3) the reproduction
of dynamic behavior.

(C2) We demonstrated benefits of (D1) and (D2). The exper-
imental results showed an accurate prediction within
10% error for a 64-node cluster. Therefore, our lin-
ear representation of master’s overhead is important for
scalability analysis of M/S program performance for
investigating the optimal number of slaves.

(C3) We demonstrated the benefits of (D3) by predicting the
performance of sophisticated programs. However, cur-
rent MSE requires higher speed network than the target
network.

Our prediction method is also applicable to other mes-
sage passing programs, because our model is an extension
of the LogP model.

Future work includes the development of more intel-
ligent implementation for realizing (D3) toward predicting
M/S program performance on high speed network by using
slow speed network.

Acknowledgement

The authors are grateful to the anonymous reviewers for
their valuable comments. This work was partly sup-
ported by JSPS Research for the Future Program JSPS-
RFTF99100903, JSPS Grant-in-Aid for Young Scientists
(B)(15700030), for Scientific Research (C)(2)(14580374),
and Network Development Laboratories, NEC.

References

[1] R. Buyya, ed., High Performance Cluster Computing, Prentice Hall
PTR, Englewood Cliffs, NJ, 1999.

974

(2]

(3]

(4]

(51

(6]

(71

(8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

I. Foster and C. Kesselman, eds., The Grid: Blueprint for a
New Computing Infrastructure, Morgan Kaufmann Publishers, San
Mateo, CA, July 1998.

A. Grama, A. Gupta, G. Karpis, and V. Kumar, eds., Introduction
to Parallel Computing, second ed., Addison-Wesley, Reading, MA,
2003.

P. Czarnul, K. Tomko, and H. Krawczyk, “Dynamic partitioning
of the divide-and-conquer scheme with migration in PVM envi-
ronment,” Proc. 8th European PVM/MPI Users’ Group Meeting
(EuroPVM/MPI’01), pp.174-182, Sept. 2001.

R.V. van Nieuwpoort, T. Kielmann, and H.E. Bal, “Efficient load
balancing for wide-area divide-and-conquer applications,” Proc. 8th
ACM SIGPLAN Symp. Principles and Practice of Parallel Program-
ming (PPoPP’01), pp.34-43, June 2001.

K. Ooyama, Y. Mizutani, N. Fujimoto, and K. Hagihara, “Imple-
mentation of a parallel recursive program based on dynamic division
of processor groups,” Trans. IPSJ Programming, vol.43, no.SIGO1,
pp.-107-117, Jan. 2001.

K. Aida and W. Natsume, “Distributed computing with hierachical
mater-worker paradigm for parallel branch and bound algorighm,”
Proc. 3rd IEEE/ACM Int’l Symp. Cluster Computing and the Grid
(CCGrid’03), pp.156-163, May 2003.

Message Passing Interface Forum, “MPI: A message-passing inter-
face standard,” Int’l J. Supercomputer Applications and High Per-
formance Computing, vol.8, no.3/4, pp.159—416, 1994.

F. Ino, N. Fujimoto, and K. Hagihara, “LogGPS: A parallel com-
putational model for synchronization analysis,” Proc. 8th ACM
SIGPLAN Symp. Principles and Practice of Parallel Programming
(PPoPP’01), pp.133-142, June 2001.

H.J. Song, X. Liu, D. Jakobsen, R. Bhagwan, X. Zhang, K. Taura,
and A. Chien, “The MicroGrid: A scientific tool for modeling com-
putational grids,” Scientific Programming, vol.8, no.3, pp.127-141,
2000.

J. Rexford, W. Feng, J. Dolter, and K.G. Shin, “PP-MESS-SIM: A
flexible and extensible simulator for evaluating multicomputer net-
works,” IEEE Trans. Parallel Distrib. Syst., vol.8, no.1, pp.25-40,
Jan. 1997.

D.E. Culler, R.M. Karp, D.A. Patterson, A. Sahay, K.E. Schauser, E.
Santos, R. Subramonian, and T. von Eicken, “LogP: Towards a re-
alistic model of parallel computation,” Proc. 4th ACM SIGPLAN
Symp. Principles Practice of Parallel Programming (PPoPP’93),
pp.1-12, May 1993.

A. Alexandrov, M.F. Tonescu, K.E. Schauser, and C. Scheiman,
“LogGP: Incorporating long messages into the LogP model for par-
allel computation,” J. Parallel and Distributed Computing, vol.44,
no.1, pp.71-79, July 1997.

M.I. Frank, A. Agarwal, and M.K. Vernon, “LoPC: Modeling
contention in parallel algorithms,” Proc. 6th ACM SIGPLAN
Symp. Principles and Practice of Parallel Programming (PPoPP’97),
pp-276-287, June 1997.

C.A. Moritz and ML.I. Frank, “LoGPC: Modeling network contention
in message-passing programs,” IEEE Trans. Parallel Distrib. Syst.,
vol.12, no.4, pp.404—415, April 2001.

R. Rugina and K.E. Schauser, “Predicting the running times of par-
allel programs by simulation,” Proc. 12th Int’l Parallel Processing
Symp. (IPPS’98), pp.654-660, April 1998.

V.S. Adve, R. Bagrodia, J.C. Browne, E. Deelman, A. Dube, E.N.
Houstis, J.R. Rice, R. Sakellariou, D.J. Sundaram-Stukel, P.J. Teller,
and M.K. Vernon, “POEMS: End-to-end performance design of
large parallel adaptive computational systems,” IEEE Trans. Softw.
Eng., vol.26, no.11, pp.1027-1048, Nov. 2000.

D.F. Kvasnicka, H. Hlavacs, and C.W. Ueberhuber, “Simulating par-
allel program performance with CLUE,” Proc. 2001 Int’l Symp. Per-
formance Evaluation of Computer and Telecommuication Systems
(SPECTS’01), pp.140-149, July 2001.

O. Beaumont, A. Legrand, and Y. Robert, “The master-slave
paradigm with heterogeneous processors,” Proc. 3rd IEEE Int’l

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

IEICE TRANS. INF. & SYST., VOL.E87-D, NO.4 APRIL 2004

Conf. Cluster Computing (CLUSTER’01), pp.419—426, Oct. 2001.

C. Anglano, “Predicting parallel applications performance on non-
dedicated cluster platforms,” Proc. 12th ACM Int’1 Conf. Supercom-
puting (ICS’98), pp.172-179, July 1998.

A.G. Greenberg and P.E. Wright, “Design and analysis of mas-
ter/slave multiprocessors,” IEEE Trans. Comput., vol.40, no.8,
pp-963-976, Aug. 1991.

W. Gropp, E. Lusk, N. Doss, and A. Skjellum, “A high-
performance, portable implementation of the MPI message
passing interface standard,” Parallel Computing, vol.22, no.6,
pp-789-828, http://www.mcs.anl.gov/mpi/mpich/, 1996.

G. Burns, R. Daoud, and J. Vaigl, “LAM: An open cluster environ-
ment for MPI,” Proc. Supercomputing Symp. (SS°94), pp.379-386,
http://www.lam-mpi.org/, June 1994.

F. O’Carroll, H. Tezuka, A. Hori, and Y. Ishikawa, “The design and
implementation of zero copy MPI using commodity hardware with a
high performance network,” Proc. 12th ACM Int’l Conf. Supercom-
puting (ICS’98), pp.243-250, http://www.pccluster.org/, July 1998.

V.S. Adve, R. Bagrodia, E. Deelman, and R. Sakellariou, “Compiler-
optimized simulation of large-scale applications on high perfor-
mance architectures,” J. Parallel and Distributed Computing, vol.62,
no.3, pp.393-426, March 2002.

Y. Kawasaki, F. Ino, Y. Mizutani, N. Fujimoto, T. Sasama, Y. Sato,
S. Tamura, and K. Hagihara, “A high performance computing sys-
tem for medical imaging in the remote operating room,” Proc. 10th
Int’] Conf. High Performance Computing (HiPC 2003), pp.162-173,
Dec. 2003.

N.J. Boden, D. Cohen, R.E. Felderman, A.E. Kulawik, C.L.
Seitz, J.N. Seizovic, and W.-K. Su, “Myrinet: A gigabit-per-
second local-area network,” IEEE Micro, vol.15, no.1, pp.29-36,
http://www.myri.com/, Feb. 1995.

Yasuharu Mizutani received the MLE. de-
gree in information and computer sciences from
Osaka University in 2001. From 2001 to 2002,
he was a Software Engineer at Mitsubishi Elec-
tric, Japan. He is currently working toward the
Ph.D. degree at the Department of Computer
Science, Graduate School of Information Sci-
ence and Technology, Osaka University. His
research interests include parallel programming
language, software development tools, and per-
formance evaluation.

Fumihiko Ino received the B.E. and M.E.
degrees in information and computer sciences
from Osaka University in 1998 and 2000, re-
spectively. Since 2002, he has been an Assis-
tant Professor in the Graduate School of Infor-
mation Science and Technology at Osaka Uni-
versity. His research interests include parallel
and distributed systems, software development
tools, and performance evaluation.

MIZUTANI et al.: EVALUATION OF PERFORMANCE PREDICTION METHOD FOR MASTER/SLAVE PARALLEL PROGRAMS
975

Kenichi Hagihara received the B.E., M.E.,
and Ph.D. degrees in information and computer
sciences from Osaka University in 1974, 1976,
and 1979, respectively. From 1994 to 2002,
he was a Professor in the Department of In-
formatics and Mathematical Science, Graduate
School of Engineering Science, Osaka Univer-
sity. Since 2002, he has been a Professor in
the Department of Computer Science, Graduate
School of Information Science and Technology,
Osaka University. From 1992 to 1993, he was a
Visiting Researcher at the University of Maryland. His research interests
include the fundamentals and practical application of parallel processing.

