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ABSTRACT
We present a new parallel computational model, named Log-
GPS, which captures synchronization.

The LogGPS model is an extension of the LogGP model,
which abstracts communication on parallel platforms. Al-
though the LogGP model captures long messages with one
bandwidth parameter (G), it does not capture synchroniza-
tion that is needed before sending a long message by high-
level communication libraries. Our model has one additional
parameter, S, defined as the threshold for message length,
above which synchronous messages are sent.

We also present some experimental results using both
models. The results include (1) a verification of the LogGPS
model, (2) an example of synchronization analysis using an
MPI program and (3) a comparison of the models. The re-
sults indicate that the LogGPS model is more accurate than
the LogGP model, and analyzing synchronization costs is
important when improving parallel program performance.

1. INTRODUCTION
When developing parallel programs, the programs are ex-

pected to get much better performance on many parallel
platforms. To develop such programs, parallel computa-
tional models are useful for developers. The models abstract
the performance of the platforms so that, by changing the
parameters of the model, developers can know the predicted
performance of programs on every platform.

Both the LogP model [5] and the LogGP model [2] are
such realistic models. In [2, 5, 6] the models have shown
good accuracy for low-level communication libraries such as
Active Messages [19] and Elan library [8]. The LogP model
abstracts the communication performance of a platform by
four parameters: L, o, g and P (see §3). The LogGP model
has one additional parameter (G) compared with the LogP
model and captures special support (that many platforms
have) for long messages, which provides much higher com-
munication bandwidth for long messages compared to short
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messages. That is, the LogGP model uses two bandwidth:
1/G for long messages and 1/g for short messages.

Thus, the LogGP model reflects the advantage of the spe-
cial support, however, it does not reflect the disadvantage,
i.e., the need of synchronization when sending a long mes-
sage. This lack might make the model inaccurate, espe-
cially for programs written using high-level communication
libraries such as MPI [13] and MPL [9]. For example, many
MPI implementations [4, 7, 10, 15] switch communication
protocols according on message length, and the protocols
can be classified into two groups: synchronous and asyn-
chronous. This protocol switch is out of consideration un-
der the LogGP model, which reflects only the advantage of
the support. Therefore, for accuracy, models for parallel
programs such as MPI programs should reflect not only the
advantage but also the disadvantage of the support.

In previous works [1, 12, 14, 17], the LogGP model has
been used to analyze the performance of MPI programs.
In [1, 14] they indicated that synchronization occurs before
sending a long message. They assumed that the sender pro-
cessor synchronizes to the receiver processor at the shortest
time and included the synchronization cost into the over-
head, o, defined as a constant value for every message length.
However, since the sender does not always synchronize at
the shortest time, their method has insufficient accuracy for
programs that vary its synchronization costs at long range.
The same discussion can be held for [12], which misses con-
sidering synchronization.

In [17] they built a synchronization model for a wavefront
application that uses MPI routines. They showed its syn-
chronization cost as a formula, which consists of the commu-
nication latency and the processor ID, and added the syn-
chronization cost to the communication cost derived by the
LogGP model. Their method has good accuracy but cannot
apply to programs that are difficult to derive the equation
without run. In addition, the derived model is dependent on
the target application, so that we have to repeatedly build
a synchronization model for every application.

Through the previous works, we think that synchroniza-
tion costs must be accurately analyzed for the whole anal-
ysis of MPI programs and synchronization models must be
independent of the target programs. To analyze the syn-
chronization costs in accurate, the LogGP model (and also
the LogP model) is insufficient because it misses considering
the protocol switch.

Furthermore, both the methods for deriving the parame-
ters of the models and the definitions of MPI routine costs



Table 1: MPICH communication protocols
Protocol Packet Synchronization
Short single no
Eager multiple no
Rendezvous multiple yes

are different among the works, and it is not clear which
method provides better accuracy.

Now, our goals are as follows.

(G1) Develop a realistic model for synchronization analysis.

(G2) Develop a method for deriving the parameters of the
model and apply the model to high-level communica-
tion routines.

To achieve goal (G1), we extended the LogGP model
by adding one parameter, S, or the threshold for message
length, above which synchronous protocols are employed.
Furthermore, to make the model more accurate, we repre-
sented the communication overhead as a linear function of
message length. Then we named the new model LogGPS.
To achieve goal (G2), we applied the LogGPS model to some
MPI routines [13] and compared with the LogGP model by
analyzing an MPI program.

Finally, we believe that the LogGPS model is useful to
analyze the synchronization costs of parallel programs, es-
pecially when improving the performance of the programs.

The rest of the paper is organized as follows. §2 describes
the communication protocols used in MPI implementations
[4, 7, 10, 15]. §3 presents the LogGPS model and the defi-
nitions of MPI routine costs. §4 presents the experimental
results. Finally, §5 concludes the paper.

2. MPI COMMUNICATION PROTOCOLS
In this section, we describe the communication protocols

used in MPICH [7], the base of many MPI implementations.
Some other implementations are also shown in Table 2.

MPICH consists of two layers, machine-dependent and
machine-independent, separated by Abstract Device Inter-
face (ADI). The default ADI (P4) uses three protocols: Short,
Eager and Rendezvous (Rndv.), as shown in Table 1. In the
following, let Ps and Pr be the sender processor and the
receiver processor, respectively.

In the Short and Eager protocol, Ps should not wait for
Pr to call the matching receive routine because Pr copies
messages to own buffer (Fig. 1(a)). In contrast, in the
Rndv. protocol, Ps has to send a request (REQ) prior
to the original message and wait for an acknowledgement
(ACK) from Pr (Fig. 1(b)). Therefore, the use of blocking
send routine (MPI Send) makes Ps idle inside the send rou-
tine during the wait. On the other hand, nonblocking send
routine (MPI Isend) allows Ps to return immediately after
sending the REQ. However, if the ACK has not been ar-
rived when Ps calls the matching wait routine (MPI Wait),
Ps becomes idle inside the wait routine (Fig. 1(c)). Thus,
the Rndv. protocol needs synchronization, but messages are
transmitted in bulk after the synchronization, so that practi-
cal communication bandwidth grows up. Furthermore, some
platforms have special support for long messages to raise the
bandwidth more. For example, the NEC Cenju-4 [11] and
Myrinet [3] provide remote DMA transfer.

(a) Eager protocol

(b) Rendezvous protocol with blocking send

(c) Rendezvous protocol with nonblocking send
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Figure 1: Behavior of MPICH communication pro-
tocols

Table 2: Relationship between message length and
communication protocols of MPI implementations

Implementation
Message length (bytes)

Short Eager Rndv.
MPICH P4 ∼1023 ∼127999 128000∼
MPICH Cenju-4 ∼1028 – 1029∼
MPICH-SCore ∼8191∗ ∼16383∗∗ 16384∗∗ ∼
LAM C2C ∼65536 – 65537∼
IBM PE ∼4095 – 4096∗∗ ∼
∗: on Myrinet ∗∗: changeable by runtime option

Table 2 shows the relationship between message length
and the communication protocols of MPI implementations
[4, 7, 10, 15]. Each employs asynchronous protocols (Short
and Eager) for short messages and synchronous (Rndv.) for
long. That is, MPI implementations switch the protocol to
provide better bandwidth for any given message length.

To change the threshold length between the asynchronous
and synchronous protocols, we must modify the source code
of MPI implementation and re-compile it. But some imple-
mentations such as MPICH-SCore [15] and IBM PE [10] can
change the threshold statically by runtime option. As far as
we know, the threshold is unchangeable during a run.

In the following we use the term sender synchronization
cost, defined as the length of the wait time at Ps, time af-
ter the arrival of a REQ until the call of the receive routine
(Fig. 1(b)). We also use the term receiver synchronization
cost, the length of the wait time at Pr, time after the call of
a receive routine until the arrival of the message (Fig. 1(a)).
Synchronization costs are defined as the sum of sender syn-
chronization costs and receiver synchronization costs. Be-
sides, we use the term communication cost, defined as the
length of time after the call of a send routine at Ps until
the call of the receive routine at Pr, and the term MPI rou-
tine cost, defined as the length of time after the call of the
routine until the return of the routine (Fig. 1(a)).
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Table 3: Communication costs under the LogGPS model
Condition Communication cost T1,T2,...,T5

k ≤ s T1 + T2 + T3 (1) T1 = o′ + kOs T2 = kGs + L
s < k ≤ S T1 + T ′

2 + T3 (2) T ′
2 = sGs + (k − s)Gl + L T3 = o′ + kOr

k > S T4 + T5 + T1 + T ′
2 + T3 (3) T4 = max{o′ + L, tr − ts} + o′ T5 = o′ + L + o′

3. THE LOGGPS MODEL
The LogGP model [2], the base of the LogGPS model, has

five parameters as follows.

• L: an upper bound on the Latency, incurred in send-
ing a message from its source processor to its target
processor.

• o: the overhead, defined as the length of time that a
processor is engaged in the transmission or reception
of each message; during this time the processor cannot
perform other operations.

• g: the gap between messages, defined as the mini-
mum time interval between consecutive message trans-
missions or consecutive message receptions at a pro-
cessor. The reciprocal of g corresponds to the avail-
able per processor communication bandwidth for short
messages.

• G: the Gap per byte for long messages, defined as the
time per byte for a long message. The reciprocal of G
characterizes the available per processor communica-
tion bandwidth for long messages.

• P : the number of processor/memory modules.

Compared with the LogGP model, the LogGPS model has
three differences as follows: differences (D1), (D2) and (D3).
Let k be the length of a message in the following (k ≥ 0).

(D1) Add one parameter, S, defined as the threshold for
message length, above which synchronous messages are
sent. When k > S, Ps waits for an ACK from Pr.
Otherwise, Ps sends an asynchronous message.

(D2) Divide the overhead, o, between Ps and Pr, and let o′+
kOs and o′+kOr be the send overhead and the receive
overhead, respectively; o′ represents the overhead for
the first byte of a message, and Os and Or represent
the send overhead and the receive overhead per byte
for the subsequent byte of the message, respectively.

(D3) Add one parameter, s, defined as the threshold for
message length, above which messages are sent in mul-
tiple packets. Furthermore, divide the Gap, G, be-
tween single and multiple packets, i.e., Gap Gl for
k ≤ s and Gs for k > s.

Difference (D1) allows the LogGPS model to decide whether
a message should be sent in asynchronous or synchronous so
that the model captures synchronization. The rest of dif-
ferences, (D2) and (D3), are ideas to make the model more
accurate. The benefits of these ideas are shown in §4.3.
3.1 Communication Costs under the Model

In this section, we define the communication cost of a
k-bytes message under the LogGPS model (Table 3).

Figure 2 shows an example of three messages (send1, send2
and send3) under the LogGPS model, where s = 2 and
S = 4.

When k ≤ S, Ps sends asynchronous messages (send1 and
send2). The communication costs are defined by summing
up time T1, T2 (or T ′

2) and T3, each shown in Figure 2.
First, the time to push the first byte of a message into the
network, T1, is defined as the send overhead, or o′ + kOs.
Second, the time after the departure of the first byte at Ps
until the arrival of the last byte at Pr, T2 (or T ′

2), is defined
as kGs + L (or sGs + (k − s)Gl + L). This is explained as
follows. (a) Subsequent bytes take Gs cycles each to go out.
(b) After the bytes amount to length s, the subsequent bytes
take Gl cycles each. (c) Each byte transmitted through the
network for L cycles. Third, the time to get the last byte
from the network, T3, is defined as the receive overhead, or
o′ +kOr. Finally, when k ≤ S, the communication costs are
defined as equations (1) and (2) shown in Table 3.

When k > S, Ps synchronizes to Pr (send3). In addition
to times T1, T2 and T3, the communication cost is defined
by summing up the time to establish synchronization, times
T4 and T5 as shown in Figure 2. First, Ps sends a REQ to
Pr. We consider the REQ as a zero-byte message, so that
the REQ arrives at time o′ + L. Second, Ps waits for an
ACK from Pr. On the other hand, Pr confirms if the REQ
have been arrived when it calls the receive routine. This



Table 4: MPI routine costs under the LogGPS model
Routine Condition Cost
MPI_Send k ≤ S T1 (4)

k > S T4 + T5 + T1 (5)
MPI_Isend o′ (6)
MPI_Recv k ≤ s max{T1 + T2 − (tr − ts), 0} + T3 (7)

s < k ≤ S max{T1 + T ′
2 − (tr − ts), 0} + T3 (8)

k > S max{o′ + L − (tr − ts), 0} + o′ + T5 + T1 + T ′
2 + T3 (9)

MPI_Irecv o′ (10)
MPI_Wait max{Tblk − (ti − tw), o′} (11)

confirmation takes the receive overhead, or o′. Thus, the
time after the call of the send routine until the confirmation
of the REQ, T4, is defined as max{o′+L, tr−ts}+o′, where
ts is the call time of the send routine and tr is the call time
of the matching receive routine. Third, Pr sends an ACK
to Ps. As we did for REQ, we consider the ACK as a zero-
byte message, so that the time to communicate the ACK,
T5, is defined as o′ +L+o′. Finally, after receiving the ACK
from Pr, Ps sends the original message. After this synchro-
nization, the rest of the time required for communication is
equal to equation (2). Therefore, when k > S, we define
the communication cost as equation (3). Since equation (3)
includes the biggest term from terms tr − ts and o′ + L, the
LogGPS model captures synchronization costs.

3.2 MPI routine costs under the Model
In §3.1, we defined communication costs, but MPI routine

costs are not equal to the communication costs, as shown
in Figure 1(a). Furthermore, the performance of MPI pro-
grams varies according to the mode of employed MPI rou-
tines. That is, the performance depends on whether the pro-
grams employ blocking or nonblocking routines (although
the communication costs are the same under both modes).
Therefore, to get better accuracy, we should define the MPI
routine costs.

MPI libraries are usually implemented on low-level com-
munication libraries. For example, MPICH for the NEC
Cenju-4 uses Paralib/CJ4 [11] and MPICH-SCore does PM
[15]. Accordingly, we can apply the LogGPS model accord-
ing to the following two policies.

(P1) Apply the model to each low-level communication rou-
tine, which constructs MPI routines.

(P2) Apply the model to each MPI routine so that disregard
the inside implementation of the MPI routine.

According to policy (P1), we can get an accurate MPI
model but the model is dependent on each MPI implemen-
tation. In contrast, according to policy (P2), we can get a
model that is applicable to any implementations. However,
because the model disregards the inside behavior of MPI
routines, an idea to solve paradoxes is needed. The paradox
is, for example, given a model that defines the MPI Send
cost as a constant value (o) and an MPI implementation
that returns from an MPI Send call after the entire message
has been pushed into the network, the model cannot define
the MPI Send cost in accurate. This paradox is caused by
the conflict between the constant value (o) and the linear
function of message length (k), or the cost to push the en-
tire message into the network. Therefore, in the LogGPS

model, all of times T1, T2 and T3 are represented as lin-
ear functions of message length. This representation allows
messages to be pushed in any of times T1, T2 and T3 and
the model to disregard the inside implementation of MPI
routines. Although the meanings of each parameter could
change, we choose policy (P2) to achieve goal (G1), that is,
the goal to develop a realistic model for many platforms.

Now, in the following, we define three MPI routine costs:
MPI Send, MPI Recv and MPI Wait. Table 4 shows some
major MPI routine costs, including the above three.

First, we define the MPI Send cost. When k ≤ S, that
is, when sending an asynchronous message, Ps spends the
send overhead, T1, and returns from the MPI Send (equa-
tion (4)). When k > S, Ps synchronizes to Pr. Therefore,
to return from the MPI Send call, the time to establish syn-
chronization, T4 + T5, is added to T1 (equation (5)).

Second, we define the MPI Isend cost. When k ≤ S, Ps
returns from the MPI Isend after the start of send operation
(equation (6)). When k > S, Ps has to synchronize but can
return after the send of an ACK (equation (6)).

Besides, if send routines or receive routines are called con-
secutively, each consecutive call must be called at g intervals
at the shortest. Therefore, all equations shown in Table 4
should include term g in a strict way. However, we disregard
g and use the equations that exclude g. The reason of this
exclusion will be presented in §4.2.

Third, we define the MPI Wait cost, Twait. Usually, a
blocking routine consists of a nonblocking routine and a wait
routine. Therefore, we compute back Twait from the cost of
the blocking routine, Tblk, as follows. First, we temporarily
replace the nonblocking routine, which matches to the target
MPI Wait, to a blocking routine. Then, we can calculate
Tblk using equations (4), (5) and (7)-(9). Second, if let tw be
the call time of the MPI Wait and ti be the call time of the
matching nonblocking routine, then at time tw, a processor
have already processed the partial operation corresponds to
time ti − tw while the whole operation corresponds to time
Tblk. Therefore, Twait is defined as equation (11). Equation
(11) includes term o′ to guarantee itself to take a positive
value. Strictly, the most suitable term is the time to confirm
the completion of the communication, but for the simplicity
of the model, we substitute the overhead, o′.

4. EXPERIMENTAL RESULTS
In this section, we present some experimental results us-

ing both the LogGPS model and the LogGP model. The
experiments are structured as follows.

1. The verification of the LogGPS model: We verified
that both differences (D2) and (D3) (see §3) make the
model more accurate on several platforms (§4.3).



Table 5: LogGPS parameters for each platform
Platform L (ns) o′ (ns) Os (ns) Or (ns) Gs (ns) Gl (ns) s (bytes) S (bytes)

Cenju-4 0.64×103 7.82×103 7.63 12.77 0.57 -12.74 1028 1028
Myrinet 1.16×103 6.55×103 6.86 2.57 15.48 - 0.74 8191 16383
Fast Ethernet 35.22×103 20.59×103 10.67 5.87 191.89 74.95 1023 16383

Table 6: LogGPS Round Trip Time
Condition Round Trip Time: RTT1

k ≤ s max{T1 + 2T2 + T3 − w, 0} + w + T1 + T3 (12)
s < k ≤ S max{T1 + 2T ′

2 + T3 − w, 0} + w + T1 + T3 (13)
k > S max{T ′

2 + T3 + o′ + L − w, 0} + w + 2T1 + T ′
2 + T3 + 2T4 + 2T5 − (o′ + L) (14)

2. The usefulness of the LogGPS model: We used the
model to analyze a Gaussian elimination program, and
detected the sender synchronization costs as its perfor-
mance bottleneck (§4.4). We also tried to eliminate the
bottleneck using the model (§4.5)．

3. The comparison of the models: We compared the Log-
GPS model with the LogGP model and confirmed that
the LogGPS model yields better accuracy (§4.6).

4.1 Experimental environments
The parallel platforms we used are an NEC Cenju-4 [11]

and a cluster. The cluster consists of sixteen 450MHz Pen-
tium II processors and each is connected by Myrinet [3] and
Fast Ethernet. The MPI implementations are MPICH [7]
for the Cenju-4 and MPICH-SCore [15] for the cluster.

The MPI programs we used are a Round Trip Time (RTT)
measurement program and a Gaussian elimination program
[18] (with partial pivoting), the first prize winner in NEC
Cenju-3 sections of Parallel Software Contest ’95 (PSC95)
[16]. The latter program solves the set of equations, Ax = b,
where A is a dense matrix with matrix size n.

4.2 Deriving the LogGPS Parameters
The method for deriving the LogGPS parameters from

each parallel platform is as follows. First, both parame-
ters S and s are dependent on each MPI implementation,
so that they are derived from its document or its source
code (see Table 2). Second, the rest of the parameters ex-
cept g are derived by comparing the measured RTT using
the RTT measurement program and the modeled RTT us-
ing the LogGPS model (see §4.3 for detail). Finally, the
gap (g) has little effect on the communication costs of high-
level communication routines, therefore, as did in [14], we
disregard g. Through the experiments, we used equations
(4)-(11) that exclude term g. Table 5 shows the values of
the LogGPS parameters for each platform.

Note that Gl < 0 is true. As we presented in §3.2, we
apply the LogGPS model to each MPI routine, and disre-
gard its inside implementation. Thus, the meanings of each
parameter could change, and this causes Gl < 0. In §4.3 we
will show that all MPI routine costs, defined as equations
(4)-(11), take always positive values, even if Gl < 0.

4.3 Verifying the LogGPS Model
In this section, we verify the LogGPS model. To do this,

we developed a simple RTT measurement program, which
makes a k-bytes message go and come back between two
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Figure 3: Behavior of the RTT measurement pro-
gram (k ≤ s)

processors, as illustrated in Figure 3. To imbalance proces-
sor loads, the program has one dummy iteration processed
only one side of the processors. Let w be the length of the
time to process the iteration.

In the following, we build a RTT model using the LogGPS
model (Table 6). For want of space, only when k ≤ s is
described. Let RTT1 be the LogGPS RTT and let RTT2 be
the measured RTT. From Figure 3, RTT1 can be represented
as T1 + w + TRecv, where TRecv is the MPI Recv cost at
processor P0. Then, as the value of w grows up, P0 becomes
busier than P1, so that we assume that P0 does not wait for
P1 to call MPI routines. Therefore, if P0 calls MPI Send at
time 0, then P1 calls MPI Send at time ts, or T1 + T2 + T3.
On the other hand, P0 calls MPI Recv at time tr, or T1 +
w. So, using equation (7), TRecv = max{T1 + 2T2 + T3 −
w, 0}+T3. Finally, when k ≤ s, RTT1 can be represented as
equation (12) shown in Table 6. From equation (12), when
w ≥ T1+2T2+T3, RTT1 is independent of term T2. That is,
communication costs T2 can overlap with calculation costs
w. Besides, when s < k ≤ S and when k > S, RTT1 can also
be derived in a similar way, and Table 6 shows the results.

Figure 4 shows the relationship between RTT1 and mes-
sage length, k, and Figure 5 shows the relationship between
RTT2 and k (when w takes a large value).

Now, we verify the results shown in Figure 4. First, when
w = W and k ≤ S, the gradient of the graph is Os+Or. If we
assume that the communication overhead is represented as
a constant, o′, that is Os = Or = 0, this gradient takes zero.
Thus, the gradient of the graph, where w = W and k ≤ S,
implies that the overhead should be represented as a linear
function of message length. In Figure 5, the gradient takes
non-zero on all platforms. Therefore, it is much accurate
to represent the overhead as a linear function, which we
described in (D2).
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Second, when w = W , the graph is continuous at k = s
(Fig. 4). This implies that time T ′

2 should be represented as
sGs+(k−s)Gl+L. If we assume that time T ′

2 is represented
as kGl +L, then the overhead, o′, must take two values, one
for k ≤ s and another for s < k ≤ S, to keep the graph
continuous at k = s when w = 0. If o′ takes two values, the
graph becomes discontinuous at k = s when w = W . This
result conflicts with the measured result, as shown in Figure
5. Therefore, when w = W , if the graph is continuous at
k = s, time T ′

2 should be represented as sGs +(k−s)Gl +L.
This equation represents the performance character of the
wormhole routing, which transmits contiguous packets that
follow the first packet. Besides, from Figure 5, the Gap G
takes two values, Gs for k ≤ s and Gl for k > s, as we
described in (D3).

Third, when w = W and k ≤ S, the gradient of the graph
is independent of both terms Gs and Gl (Fig. 4). That is,
when k ≤ S, if processors are loaded in imbalance, com-
munication libraries have more effect on the performance of
MPI programs than networks. In fact, in Figure 5(c), when
w = 5000 and k ≤ 16383, the communication bandwidth is
292 Mbit/s and exceeds the theory bandwidth of the Fast
Ethernet, 100 Mbit/s. This benefit is produced by asyn-
chronous protocols, that is, when P0 calls MPI Recv, the
message from P1 has already arrived at the buffer of P0, so
that P0 copies the message from own buffer.

Fourth, when w = 0 and s < k ≤ S, the gradient of the
graph is 2(Os + Or + Gl). If we assume that 2(Os + Or +
Gl) > 0, then all MPI routine costs, defined as equations (4)-
(11), take positive values. This can be explained as follows.
When Gl < 0, equation (9) is the only equation that is
possible to take a negative value among equations (4)-(11),

but Os + Or + Gl > 0 guarantees that equation (9) takes
always a positive value. Therefore, if the assumption 2(Os +
Or + Gl) > 0 (that seems to be always true from Figure 4)
is true, then all MPI routine costs take positive values.

Finally, when w = W , D(w) in Figure 4 is dependent on
term S. Therefore, if processors are loaded in imbalance, the
performance of MPI programs become worse when the mes-
sage length exceeds the value of S. Furthermore, the value
of S, defined generally by MPI implementations, determines
the degree of performance loss.

Besides, to derive the LogGPS parameters from a parallel
platform, we compare the modeled result in Figure 4 and
the measured result in Figure 5. First, both parameters L
and o′ can be derived by solving two equations, which are
yielded from two vertical axis segments. Similarly, solving
four equations, yielded from four gradients, can derive the
rest of parameters. The equations on Myrinet are as follows
(W = 5 × 105ns).

4o′ + 2L = 2.850902 × 104 (ns)
2o′ + W = 5.130990 × 105 (ns)
Os + Or = 9.430108 (ns)
2(Os + Or + Gs) = 4.981455 × 101 (ns)
2(Os + Or + Gl) = 1.737150 × 101 (ns)
2Os + Or + Gl = 1.554669 × 101 (ns)

4.4 An Example of Synchronization Analysis
In this section, we present an example of synchronization

analysis using the LogGPS model. The MPI program we
used is the Gaussian elimination program as mentioned in
§4.1. See [18] for the detail of the program.

To analyze the program, we developed a tool. The tool re-
quires two inputs, the LogGPS parameters and trace data,
and outputs the synchronization cost and predicted times
under the LogGPS model. The trace data is generated by
running the target MPI program and consists of a sequence
of time-stamped MPI events. An event has the following
data: the call and return time of the MPI routine that
recorded the event and the ID of the processor that called
the routine and the arguments of the routine. For want of
space, the detail of the tool is omitted.

First, to generate trace data, we executed the Gaussian
elimination program on our cluster (Myrinet) with different
matrix sizes: n = 128 to 4096. Second, we gave the tool two
inputs: the generated trace data and the LogGPS parame-
ters on Myrinet (see Table 5). Finally, the tool supplied us
the synchronization costs and the predicted times under the
LogGPS model, as shown in the left column of Table 7. The
column shows (1) the measured times of the program, Tm1,



Table 7: Measured and predicted times for the Gaussian elimination program (LogGPS)
Matrix Original code, S=16383 Original code, S=65536 Fragmented code, S=16383

size Meas. Pred. Err. Meas. Pred. Err. Meas. Pred. Err.
n Tm1 Tp1 σ1 Tm2 Tp2 σ2 Tm3 Tp3 σ3

256 0.047 0.050 6.4 0.047 0.050 6.4 0.047 0.050 6.4
512 0.121 0.128 5.8 0.121 0.128 5.8 0.121 0.128 5.8
1024 0.612 0.592 - 3.3 0.612 0.592 - 3.3 0.612 0.592 - 3.3
2048 7.668 7.600 - 0.9 4.403 4.328 - 1.7 4.512 4.401 - 2.5
4096 62.038 62.188 0.2 35.902 33.200 - 7.5 43.795 39.571 - 9.6

Times in seconds and errors in percentage

(a) Tp1 (Original, S=16383) (c) Tp3 (Fragmented, S=16383)(b) Tp2 (Original, S=65536)
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Figure 6: Breakdowns of predicted times (LogGPS)

(2) the predicted times under the LogGPS model, Tp1, and
(3) the errors, σ1, defined as σ1 = 100 × (Tp1 − Tm1)/Tm1.
The breakdowns of the predicted times, averaged over all
processors, are also shown in Figure 6(a)

From errors σ1, the LogGPS model predicts the execu-
tion time within 7% errors. In addition, under all val-
ues of n except 1024, the synchronization costs account for
roughly 50% of the predicted times (Fig. 6(a)). There-
fore, the synchronization cost seems to be a performance
bottleneck of this program. Furthermore, when n ≤ 1024,
the receiver synchronization costs are the major, in contrast,
when n > 1024, the sender synchronization costs are. In this
program, the length of messages became long as matrix size,
n, grew up, and when n = 1024, the longest message was
16320 bytes near to the value of S, 16383 bytes. Therefore,
when n > 1024, as n grew up, messages were sent by Rndv.
protocol, and the sender synchronization cost increased.

Note that the value of S is 128000 bytes in the MPI im-
plementation used through the contest. Thus, we think that
the sender synchronization cost was not a performance bot-
tleneck of the program when the contest held. In this time,
the LogGPS model allows us to detect the hidden perfor-
mance bottleneck by analyzing its synchronization cost with
a small value of S.

Thus, the LogGPS model allows us to divide MPI routine
costs into three inner costs, the sender synchronization cost,
receiver synchronization cost and communication overhead,
so that we can investigate the performance of MPI programs
in detail.

4.5 An Example of eliminating the sender syn-
chronization cost

In this section, we try to eliminate the bottleneck detected
in §4.4. Three methods can be employed to do this. From
an easy method, the methods are as follows.

(M1) Change the value of S to a longer length by runtime
option.

(M2) Fragment all messages into small messages, where the
length of each small messages is at most S.

(M3) Change the algorithm.

First, method (M1) can be employed on the MPI imple-
mentation that can change the value of S by runtime option
and avoids modifying the program. Second, method (M2)
can be employed on any implementations but needs to mod-
ify the program to communicate all messages within length
S. Third, method (M3) can also be employed on any im-
plementations but needs to modify the algorithm to reduce
synchronization costs and re-implement the program.

To eliminate the bottleneck, we can use the analysis as
follows. (1) Predict the performance with the actual value
of S, and this let us know what cost is paid for synchro-
nization (our prediction method currently needs a run of
the target program). If we find significant synchronization
cost from the predicted result, then we have a chance to
improve the performance using this analysis. (2) Re-predict
the performance with the bigger value of S, and this let us
know what performance will be archived when eliminating
the bottleneck. (3) If the predicted performance becomes
better, we can apply method (M1) or (M2) to improve the
real performance. Otherwise, we should try method (M3).
In the following, we describe methods (M1) and (M2).

First, we investigated the longest message from the trace
data, and the length proved to be 65472 bytes when n =
4096. We then re-analyzed its synchronization costs with
S = 65536 using the same trace data generated in §4.4. We
also re-executed the program with S = 65536 by specifying
the runtime option of MPICH-SCore (without any modifi-
cation of the program). The center column of Table 7 and
Figure 6(b) show the results.

From Tm1 and Tm2 in Table 7, the change of S affects
the measured time, Tm2, when n > 1024. The same results
can be seen between the predicted times under the LogGPS
model, times Tp1 and Tp2. From Figure 6(a) and (b), the
elimination of the sender synchronization cost shortened the
predicted times, Tm1, and the ratio of the synchronization
cost dropped from 50% to 7% when n = 4096.

Second, we describe method (M2). From Table 3 and
Table 5, the communication cost of an S-byte message is
calculated as 288 μs on Myrinet (S = 16383). On the other
hand, when n = 4096, the total amount length of messages
that exceed the value of S (16383 bytes) was 22.5 MBytes.
Then, to send all fragmented messages, processors have to
repeatedly send the fragmented messages for 1438 times.
The total amount communication cost for these messages is



Table 8: Comparisons between the LogGPS model and the LogGP model (k: message length)
Item LogGP-1 [1, 14] LogGP-2 [17] LogGPS

(D1) Synchronization Constants for every k Model separately Calculated by the call time
(included in o) of MPI routines

(D2) Overhead o Constants for every k, Two constants, Two linear functions on k,
divided between Ps and Pr divided between k ≤ s and k > s divided between Ps and Pr

(D3) Bandwidth 1/G Constants for every k Two constants, Two constants,
divided between k ≤ s and k > s divided between k ≤ s and k > s
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Figure 7: LogGP-1 parameters for Myrinet

calculated as 0.42 seconds, and this is much smaller than
the synchronization cost, 29.128 seconds when n = 4096.
Therefore, by fragmenting messages, we have a chance to
improve the program performance.

Then, we modified the program to repeatedly send and
receive messages within length S. Then, we re-executed the
modified program and re-analyzed. The right column of
Table 7 and Figure 6(c) show the results.

As shown in the measured times, Tm3, we also improved
the performance by method (M2). The predicted times, Tp3,
show a trend similar to Tm3. Note that errors σ3 are larger
than errors σ1 and σ2 when n = 4096. This is explained
as follows. If we employ method (M2), then the number of
asynchronous messages grows up, and this loads the buffer
of the receiver. To avoid the buffer to overflow, MPI imple-
mentations control messages inside MPI routines. However,
as the LogGP model does, the LogGPS model also assumes
that no delay occurs when copying messages into a buffer.
Therefore, the predicted times under the LogGPS model,
Tp3, are smaller than the measured times, Tm3.

4.6 A comparison between the LogGPS Model
and the LogGP Model

In the following, we present a comparison between the
LogGPS model and the LogGP model. The program used
for the comparison is the Gaussian elimination program used
in the pervious section.

The definitions of MPI routine costs under the LogGP
model follow the definitions shown in [1, 14] and [17]. We call
the former LogGP-1 and the latter LogGP-2 in the following.
Table 8 lists the differences among the models, from the
viewpoint of differences (D1), (D2) and (D3) described in
§3. Note that the LogGP-1 model requires deriving both
parameters o and G for every message length. Furthermore,
parameter o must be derived for every MPI routine.

First, according to each literature, we derived LogGP pa-
rameters. Table 9 and Figure 7 show the derived parame-
ters. Second, we analyzed the synchronization cost of the
program, as we did for the LogGPS model. The trace data
we used were the same as for the LogGPS model. In precise

Table 9: LogGP parameters for Myrinet

Model Parameter
Message length (bytes)

≤ 8191 > 8192
L (ns) 7.46 ×103

LogGP-1
o (ns) see Fig. 7(a) and (b)
G (ns) see Fig. 7(c)
L (ns) 7.00 ×103

LogGP-2
o (ns) 3.83 ×103 72.88 ×103

G (ns) 24.98 8.85
g is unused in both models

way, we must build a synchronization model for the LogGP-
2 model, but for the accuracy of the analysis, we analyzed
the synchronization cost in the same way of the LogGPS
model. Table 10 and Figure 8 show the results.

Now we discuss about the results shown in Table 10 and
Figure 8. First, when n = 4096, the LogGP-1 model is
inaccurate (σ4=-45.6%). This is due to the lack of consid-
eration for the sender synchronization cost. The LogGP-
1 model includes the sender synchronization cost into the
send overhead, os, and defines os as a constant value for
every message length. Therefore, given a synchronization-
bottlenecked program, the model cannot predict its bottle-
neck (Fig. 8(a)), and the results become inaccurate. In con-
trast, the LogGP-2 model builds a synchronization model
apart from the communication cost, so that the LogGP-2
model is nearly as accurate as the LogGPS model (σ7=-
0.7%). Summarizing the above discussions, both the rise of
bandwidth and need of synchronization are the dominant
factor in long messages. Therefore, to analyze the commu-
nication costs of long messages in accurate, models should
consider not only the rise of bandwidth but also the need of
synchronization.

Second, when n ≤ 1024, the LogGP-1 model is also inac-
curate (σ4=-46.8%). This is due to the method for deriving
the parameters, as described in [1, 14]. Their method calls
a measurement routine at each MPI call. Therefore, the
measurement cost could be high compared to the target, or
the cost of MPI routine, especially when the routine sends



Table 10: Predicted times for the Gaussian elimination program (LogGP)

Matrix
Original code, S=16383 Original code, S=65536 Fragmented code, S=16383

size
LogGP-1 LogGP-2 LogGP-1 LogGP-2 LogGP-1 LogGP-2

n
Pred. Err. Pred. Err. Pred. Err. Pred. Err. Pred. Err. Pred. Err.

Tp4 σ4 Tp7 σ7 Tp5 σ5 Tp8 σ8 Tp6 σ6 Tp9 σ9

256 0.069 46.8 0.043 - 8.5 0.069 46.8 0.043 - 8.5 0.069 46.8 0.043 - 8.5
512 0.165 36.4 0.110 - 9.1 0.165 36.4 0.110 - 9.1 0.165 36.4 0.110 - 9.1
1024 0.668 9.2 0.551 - 10.0 0.668 9.2 0.551 - 10.0 0.668 9.2 0.551 - 10.0
2048 4.528 - 37.4 7.486 - 2.4 4.528 8.9 4.225 - 4.0 4.609 2.1 4.284 - 5.0
4096 33.805 - 45.6 61.591 - 0.7 33.805 - 5.8 32.764 - 8.7 40.170 - 8.3 39.129 - 10.7

Times in seconds and errors in percentage

LogGP-1 LogGP-2

(a) Tp4 (Original, S=16383) (c) Tp6 (Fragmented, S=16383)(b) Tp5 (Original, S=65536)
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Figure 8: Breakdowns of predicted times (LogGP)

a short message. In fact, the measurement cost, measured
by consecutively calling MPI Wtime, is 4 μs on our clus-
ter, and this value is near to the MPI Recv cost, 6.55 μs
(length k = 1). Then, we re-measured the parameters using
CPU counter (the Pentium RDTSC instruction), which re-
quires lower overhead, but the predicted results were within
27.7% errors. Therefore, the target for measurement should
be bulked, and its cost should be derived by calculating the
cost per call. Furthermore, bulking the MPI routines must
be performed without loading the buffer of the receiver. To
do this, we measured the MPI routine costs indirectly, that
is, we measured RTT and not each MPI routine. In the
RTT measurement program, processors synchronize at ev-
ery round trip, so only one message is stored in both buffers
at every round trip. Therefore, even if processors repeatedly
process the round trip operation, the buffer of the receiver
is kept to be unloaded, so that we can measure the bulked
costs in accurate.

In contrast, when n ≤ 1024, from errors σ7, the LogGP-2
model is accurate (maximum of -10.0%) but inferior to the
errors of the LogGPS model, σ1 (maximum of 6.4%). This
is caused by the representation of the overhead, which the
LogGP-2 defines as a constant. That is, given a communication-
bottlenecked program that communicates many short mes-
sages, the LogGP-2 model predicts its communication cost
lower than measured cost. The above discussions are sum-
marized as follows. The overhead is the dominant factor in
short messages, so that to analyze the cost of short messages
in accurate, models should represent the overhead cost as
precise as possible, and a linear function of message length
is one good choice.

Besides, the only difference among the models is the method
for deriving parameters and the definitions of MPI routine
costs, so that we confirmed that these differences greatly
affect the accuracy of the model.

5. CONCLUSIONS
In this paper, we presented a new parallel computational

model, the LogGPS model, which is useful to analyze syn-
chronization costs of parallel programs. To get better accu-
racy for programs written using high-level communication
libraries, the LogGPS model has two additional parameters
(G and S) compared with the original LogP model. Param-
eter S represents the disadvantage of the special support for
long messages, the need of synchronization, while parameter
G does the advantage, the raise of bandwidth, as the LogGP
model has done.

We also presented an example of synchronization analysis.
Through the analysis, we confirmed that (1) the sender syn-
chronization cost is a performance bottleneck in MPI pro-
grams and (2) the LogGPS model is more accurate than the
LogGP model. Therefore, parameter S is an important pa-
rameter to predict the performance of programs written us-
ing high-level communication libraries, which automatically
switch communication protocols. As a result, synchroniza-
tion analysis is important when improving the performance
of parallel programs.

Finally, the work, to capture the buffer mechanism that
controls asynchronous messages, is remained.
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